首页 > 最新文献

Journal of Microbiology最新文献

英文 中文
Lactic acid bacteria from Ethiopian traditional beverage, Tella: technological and metabolic profiles for industrial application.
IF 3.3 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-20 DOI: 10.71150/jm.2409008
Gashaw Assefa Yehuala, Jaein Choe, Nurelegne Tefera Shibeshi, Kumsa Delessa, Asnake Desalegn, Mi-Kyung Park

Tella is a traditional beverage widely accepted by consumers, despite the lack of product consistency owing to its reliance on natural fermentation. This study aimed to identify potential industrial lactic acid bacteria (LAB) starter cultures based on their technological properties. Seven LAB strains isolated from Tella were characterized for their carbohydrate utilization, salt content, temperature, and acid tolerances, growth and acidification rates, and metabolite profiles. Most strains efficiently utilized various carbohydrates, with Lactiplantibacillus plantarum TDM41 showing exceptional versatility. The strains exhibited similar growth characteristics. Principal component analysis of stress tolerance properties revealed that L. plantarum TDM41, Pediococcus pentosaceus TAA01, and Leuconostoc mesenteroides TDB22 exhibited superior tolerance ability. Strong acidification properties were detected in the L. plantarum TDM41, P. pentosaceus TAA01, and Leuconostoc mesenteroides TDB22 strains after 24 h incubation at 30°C. L. plantarum TDM41 displayed the fastest acidification rate throughout the analysis period. All LAB strains produced significant amounts of diverse organic acids, including lactic acid, citric acid, acetic acid, malic acid, and succinic acid, with lactic acid being the primary acid produced by each strain. Overall, strains L. plantarum TDM41 and P. pentosaceus TAA01 prove to be potential candidates for Tella industrial starter cultures and similar cereal products owing to their robust technological properties.

{"title":"Lactic acid bacteria from Ethiopian traditional beverage, Tella: technological and metabolic profiles for industrial application.","authors":"Gashaw Assefa Yehuala, Jaein Choe, Nurelegne Tefera Shibeshi, Kumsa Delessa, Asnake Desalegn, Mi-Kyung Park","doi":"10.71150/jm.2409008","DOIUrl":"https://doi.org/10.71150/jm.2409008","url":null,"abstract":"<p><p>Tella is a traditional beverage widely accepted by consumers, despite the lack of product consistency owing to its reliance on natural fermentation. This study aimed to identify potential industrial lactic acid bacteria (LAB) starter cultures based on their technological properties. Seven LAB strains isolated from Tella were characterized for their carbohydrate utilization, salt content, temperature, and acid tolerances, growth and acidification rates, and metabolite profiles. Most strains efficiently utilized various carbohydrates, with Lactiplantibacillus plantarum TDM41 showing exceptional versatility. The strains exhibited similar growth characteristics. Principal component analysis of stress tolerance properties revealed that L. plantarum TDM41, Pediococcus pentosaceus TAA01, and Leuconostoc mesenteroides TDB22 exhibited superior tolerance ability. Strong acidification properties were detected in the L. plantarum TDM41, P. pentosaceus TAA01, and Leuconostoc mesenteroides TDB22 strains after 24 h incubation at 30°C. L. plantarum TDM41 displayed the fastest acidification rate throughout the analysis period. All LAB strains produced significant amounts of diverse organic acids, including lactic acid, citric acid, acetic acid, malic acid, and succinic acid, with lactic acid being the primary acid produced by each strain. Overall, strains L. plantarum TDM41 and P. pentosaceus TAA01 prove to be potential candidates for Tella industrial starter cultures and similar cereal products owing to their robust technological properties.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 1","pages":"e.2409008"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous gene editing of both nuclei in a dikaryotic strain of Ganoderma lucidum using Cas9-gRNA ribonucleoprotein.
IF 3.3 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI: 10.71150/jm.2409006
Yeon-Jae Choi, Hyerang Eom, Rutuja Nandre, Minseek Kim, Youn-Lee Oh, Sinil Kim, Hyeon-Su Ro

The presence of multiple nuclei in a common cytoplasm poses a significant challenge to genetic modification in mushrooms. Here, we demonstrate successful gene editing in both nuclei of a dikaryotic strain of Ganoderma lucidum using the Cas9-gRNA ribonucleoprotein complex (RNP). The RNP targeting the pyrG gene was introduced into dikaryotic protoplasts of G. lucidum, resulting in the isolation of 31 mycelial colonies resistant to 5-fluoroorotic acid (5-FOA). Twenty-six of these isolates were confirmed as dikaryotic strains by the presence of two distinct A mating type markers, denoted as A1 and A2. All dikaryons exhibited clamp connections on their mycelial hyphae, while the remaining 5 transformants were monokaryotic. Subsequent sequence analysis of PCR amplicons targeting pyrG revealed that two dikaryons harbored disrupted pyrG in both nuclei (pyrG-/pyrG-), while 10 and 14 displayed pyrG+/pyrG- (A1/A2) and pyrG-/pyrG+ (A1/A2) configurations, respectively. The disruption was achieved through non-homologous end joining repair, involving deletion or insertion of DNA fragments at the site of the double-strand break induced by RNP. Importantly, the nuclei were stable throughout 10 serial transfers over a period of 6 months. These findings highlight the capability of RNP to target genes across multiple nuclei within the same cytoplasm.

{"title":"Simultaneous gene editing of both nuclei in a dikaryotic strain of Ganoderma lucidum using Cas9-gRNA ribonucleoprotein.","authors":"Yeon-Jae Choi, Hyerang Eom, Rutuja Nandre, Minseek Kim, Youn-Lee Oh, Sinil Kim, Hyeon-Su Ro","doi":"10.71150/jm.2409006","DOIUrl":"https://doi.org/10.71150/jm.2409006","url":null,"abstract":"<p><p>The presence of multiple nuclei in a common cytoplasm poses a significant challenge to genetic modification in mushrooms. Here, we demonstrate successful gene editing in both nuclei of a dikaryotic strain of Ganoderma lucidum using the Cas9-gRNA ribonucleoprotein complex (RNP). The RNP targeting the pyrG gene was introduced into dikaryotic protoplasts of G. lucidum, resulting in the isolation of 31 mycelial colonies resistant to 5-fluoroorotic acid (5-FOA). Twenty-six of these isolates were confirmed as dikaryotic strains by the presence of two distinct A mating type markers, denoted as A1 and A2. All dikaryons exhibited clamp connections on their mycelial hyphae, while the remaining 5 transformants were monokaryotic. Subsequent sequence analysis of PCR amplicons targeting pyrG revealed that two dikaryons harbored disrupted pyrG in both nuclei (pyrG-/pyrG-), while 10 and 14 displayed pyrG+/pyrG- (A1/A2) and pyrG-/pyrG+ (A1/A2) configurations, respectively. The disruption was achieved through non-homologous end joining repair, involving deletion or insertion of DNA fragments at the site of the double-strand break induced by RNP. Importantly, the nuclei were stable throughout 10 serial transfers over a period of 6 months. These findings highlight the capability of RNP to target genes across multiple nuclei within the same cytoplasm.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 1","pages":"e.2409006"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virgibacillus saliphilus sp. nov. and Virgibacillus salidurans sp. nov., isolated from kimchi.
IF 3.3 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI: 10.71150/jm.2501001
Young Joon Oh, Joon Yong Kim, Min-Sung Kwon, Sulhee Lee, Sang-Pil Choi, Hak-Jong Choi

This study aimed to provide a taxonomic description of two bacterial strains, NKC19-3T and NKC19-16T, isolated from commercially produced kimchi obtained from various regions within the Republic of Korea. Both strains were rod-shaped, gram-stain-positive, facultatively anaerobic, and displayed positive reactions for oxidase and catalase. Additionally, these bacteria were motile, halophilic (salt-tolerant), and proliferated under alkaline conditions. Genetically, both strains showed 98.0% similarity in their 16S rRNA gene sequences and were most closely related to Virgibacillus natechei FarDT, with 96.5 and 96.8% sequence similarity, respectively. ANI values indicated that the two novel strains were distinct from V. natechei FarDT, as they were below the species demarcation threshold. The ANI value between strains NKC19-3ᵀ and NKC19-16ᵀ was 84.64-84.75%, and the values between these strains and other related strains did not exceed 80.0%, further supporting their classification as novel species. Phylogenetic analysis revealed that strains NKC19-3T and NKC19-16T formed a distinct branch within the genus Virgibacillus, clearly distinguishing them from other species in the same genus. Regarding genomic characteristics, the GC content was 38.9% for strain NKC19-3T and 39.5% for strain NKC19-16T. The genome of strain NKC19-3T had a size of approximately 4.1 Mb and contained 3,785 protein-coding genes (CDSs). Strain NKC19-16T had a slightly smaller genome, approximately 3.9 Mb in size and harbored 3,726 CDSs. The polar lipid profiles of strains NKC19-3ᵀ and NKC19-16ᵀ included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), glycolipids (GL), and an unidentified lipid (L). The predominant fatty acids of both strains were anteiso-C15:0 and anteiso-C17:0. Considering the comprehensive analysis encompassing phenotypic, genomic, phylogenetic, and chemotaxonomic data, strains NKC19-3T and NKC19-16T are proposed to represent two novel species within the genus Virgibacillus. The suggested names for these species are Virgibacillus saliphilus sp. nov. (type strain NKC19-3T, also referred to as KACC 22326T and DSM 112707T) and Virgibacillus salidurans sp. nov. (type strain NKC19-16T, also referred to as KACC 22327T and DSM 112708T).

{"title":"Virgibacillus saliphilus sp. nov. and Virgibacillus salidurans sp. nov., isolated from kimchi.","authors":"Young Joon Oh, Joon Yong Kim, Min-Sung Kwon, Sulhee Lee, Sang-Pil Choi, Hak-Jong Choi","doi":"10.71150/jm.2501001","DOIUrl":"https://doi.org/10.71150/jm.2501001","url":null,"abstract":"<p><p>This study aimed to provide a taxonomic description of two bacterial strains, NKC19-3T and NKC19-16T, isolated from commercially produced kimchi obtained from various regions within the Republic of Korea. Both strains were rod-shaped, gram-stain-positive, facultatively anaerobic, and displayed positive reactions for oxidase and catalase. Additionally, these bacteria were motile, halophilic (salt-tolerant), and proliferated under alkaline conditions. Genetically, both strains showed 98.0% similarity in their 16S rRNA gene sequences and were most closely related to Virgibacillus natechei FarDT, with 96.5 and 96.8% sequence similarity, respectively. ANI values indicated that the two novel strains were distinct from V. natechei FarDT, as they were below the species demarcation threshold. The ANI value between strains NKC19-3ᵀ and NKC19-16ᵀ was 84.64-84.75%, and the values between these strains and other related strains did not exceed 80.0%, further supporting their classification as novel species. Phylogenetic analysis revealed that strains NKC19-3T and NKC19-16T formed a distinct branch within the genus Virgibacillus, clearly distinguishing them from other species in the same genus. Regarding genomic characteristics, the GC content was 38.9% for strain NKC19-3T and 39.5% for strain NKC19-16T. The genome of strain NKC19-3T had a size of approximately 4.1 Mb and contained 3,785 protein-coding genes (CDSs). Strain NKC19-16T had a slightly smaller genome, approximately 3.9 Mb in size and harbored 3,726 CDSs. The polar lipid profiles of strains NKC19-3ᵀ and NKC19-16ᵀ included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), glycolipids (GL), and an unidentified lipid (L). The predominant fatty acids of both strains were anteiso-C15:0 and anteiso-C17:0. Considering the comprehensive analysis encompassing phenotypic, genomic, phylogenetic, and chemotaxonomic data, strains NKC19-3T and NKC19-16T are proposed to represent two novel species within the genus Virgibacillus. The suggested names for these species are Virgibacillus saliphilus sp. nov. (type strain NKC19-3T, also referred to as KACC 22326T and DSM 112707T) and Virgibacillus salidurans sp. nov. (type strain NKC19-16T, also referred to as KACC 22327T and DSM 112708T).</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 1","pages":"e.2501001"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in functional analysis of the microbiome: Integrating metabolic modeling, metabolite prediction, and pathway inference with Next-Generation Sequencing data.
IF 3.3 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI: 10.71150/jm.2411006
Sungwon Jung

This review explores current advancements in microbiome functional analysis enabled by next-generation sequencing technologies, which have transformed our understanding of microbial communities from mere taxonomic composition to their functional potential. We examine approaches that move beyond species identification to characterize microbial activities, interactions, and their roles in host health and disease. Genome-scale metabolic models allow for in-depth simulations of metabolic networks, enabling researchers to predict microbial metabolism, growth, and interspecies interactions in diverse environments. Additionally, computational methods for predicting metabolite profiles offer indirect insights into microbial metabolic outputs, which is crucial for identifying biomarkers and potential therapeutic targets. Functional pathway analysis tools further reveal microbial contributions to metabolic pathways, highlighting alterations in response to environmental changes and disease states. Together, these methods offer a powerful framework for understanding the complex metabolic interactions within microbial communities and their impact on host physiology. While significant progress has been made, challenges remain in the accuracy of predictive models and the completeness of reference databases, which limit the applicability of these methods in under-characterized ecosystems. The integration of these computational tools with multi-omic data holds promise for personalized approaches in precision medicine, allowing for targeted interventions that modulate the microbiome to improve health outcomes. This review highlights recent advances in microbiome functional analysis, providing a roadmap for future research and translational applications in human health and environmental microbiology.

{"title":"Advances in functional analysis of the microbiome: Integrating metabolic modeling, metabolite prediction, and pathway inference with Next-Generation Sequencing data.","authors":"Sungwon Jung","doi":"10.71150/jm.2411006","DOIUrl":"https://doi.org/10.71150/jm.2411006","url":null,"abstract":"<p><p>This review explores current advancements in microbiome functional analysis enabled by next-generation sequencing technologies, which have transformed our understanding of microbial communities from mere taxonomic composition to their functional potential. We examine approaches that move beyond species identification to characterize microbial activities, interactions, and their roles in host health and disease. Genome-scale metabolic models allow for in-depth simulations of metabolic networks, enabling researchers to predict microbial metabolism, growth, and interspecies interactions in diverse environments. Additionally, computational methods for predicting metabolite profiles offer indirect insights into microbial metabolic outputs, which is crucial for identifying biomarkers and potential therapeutic targets. Functional pathway analysis tools further reveal microbial contributions to metabolic pathways, highlighting alterations in response to environmental changes and disease states. Together, these methods offer a powerful framework for understanding the complex metabolic interactions within microbial communities and their impact on host physiology. While significant progress has been made, challenges remain in the accuracy of predictive models and the completeness of reference databases, which limit the applicability of these methods in under-characterized ecosystems. The integration of these computational tools with multi-omic data holds promise for personalized approaches in precision medicine, allowing for targeted interventions that modulate the microbiome to improve health outcomes. This review highlights recent advances in microbiome functional analysis, providing a roadmap for future research and translational applications in human health and environmental microbiology.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 1","pages":"e.2411006"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PneusPage: A WEB-BASED TOOL for the analysis of Whole-Genome Sequencing Data of Streptococcus pneumonia.
IF 3.3 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI: 10.71150/jm.2409020
Eunju Hong, Youngjin Shin, Hyunseong Kim, Woo Young Cho, Woo-Hyun Song, Seung-Hyun Jung, Minho Lee

With the advent of whole-genome sequencing, opportunities to investigate the population structure, transmission patterns, antimicrobial resistance profiles, and virulence determinants of Streptococcus pneumoniae at high resolution have been increasingly expanding. Consequently, a user-friendly bioinformatics tool is needed to automate the analysis of Streptococcus pneumoniae whole-genome sequencing data, summarize clinically relevant genomic features, and further guide treatment options. Here, we developed PneusPage, a web-based tool that integrates functions for species prediction, molecular typing, drug resistance determination, and data visualization of Streptococcus pneumoniae. To evaluate the performance of PneusPage, we analyzed 80 pneumococcal genomes with different serotypes from the Global Pneumococcal Sequencing Project and compared the results with those from another platform, PathogenWatch. We observed a high concordance between the two platforms in terms of serotypes (100% concordance rate), multilocus sequence typing (100% concordance rate), penicillin-binding protein typing (88.8% concordance rate), and the Global Pneumococcal Sequencing Clusters (98.8% concordance rate). In addition, PneusPage offers integrated analysis functions for the detection of virulence and mobile genetic elements that are not provided by previous platforms. By automating the analysis pipeline, PneusPage makes whole-genome sequencing data more accessible to non-specialist users, including microbiologists, epidemiologists, and clinicians, thereby enhancing the utility of whole-genome sequencing in both research and clinical settings. PneusPage is available at https://pneuspage.minholee.net/.

{"title":"PneusPage: A WEB-BASED TOOL for the analysis of Whole-Genome Sequencing Data of Streptococcus pneumonia.","authors":"Eunju Hong, Youngjin Shin, Hyunseong Kim, Woo Young Cho, Woo-Hyun Song, Seung-Hyun Jung, Minho Lee","doi":"10.71150/jm.2409020","DOIUrl":"https://doi.org/10.71150/jm.2409020","url":null,"abstract":"<p><p>With the advent of whole-genome sequencing, opportunities to investigate the population structure, transmission patterns, antimicrobial resistance profiles, and virulence determinants of Streptococcus pneumoniae at high resolution have been increasingly expanding. Consequently, a user-friendly bioinformatics tool is needed to automate the analysis of Streptococcus pneumoniae whole-genome sequencing data, summarize clinically relevant genomic features, and further guide treatment options. Here, we developed PneusPage, a web-based tool that integrates functions for species prediction, molecular typing, drug resistance determination, and data visualization of Streptococcus pneumoniae. To evaluate the performance of PneusPage, we analyzed 80 pneumococcal genomes with different serotypes from the Global Pneumococcal Sequencing Project and compared the results with those from another platform, PathogenWatch. We observed a high concordance between the two platforms in terms of serotypes (100% concordance rate), multilocus sequence typing (100% concordance rate), penicillin-binding protein typing (88.8% concordance rate), and the Global Pneumococcal Sequencing Clusters (98.8% concordance rate). In addition, PneusPage offers integrated analysis functions for the detection of virulence and mobile genetic elements that are not provided by previous platforms. By automating the analysis pipeline, PneusPage makes whole-genome sequencing data more accessible to non-specialist users, including microbiologists, epidemiologists, and clinicians, thereby enhancing the utility of whole-genome sequencing in both research and clinical settings. PneusPage is available at https://pneuspage.minholee.net/.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 1","pages":"e.2409020"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on computational models for predicting protein solubility.
IF 3.3 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI: 10.71150/jm.2408001
Teerapat Pimtawong, Jun Ren, Jingyu Lee, Hyang-Mi Lee, Dokyun Na

Protein solubility is a critical factor in the production of recombinant proteins, which are widely used in various industries, including pharmaceuticals, diagnostics, and biotechnology. Predicting protein solubility remains a challenging task due to the complexity of protein structures and the multitude of factors influencing solubility. Recent advances in computational methods, particularly those based on machine learning, have provided powerful tools for predicting protein solubility, thereby reducing the need for extensive experimental trials. This review provides an overview of current computational approaches to predict protein solubility. We discuss the datasets, features, and algorithms employed in these models. The review aims to bridge the gap between computational predictions and experimental validations, fostering the development of more accurate and reliable solubility prediction models that can significantly enhance recombinant protein production.

{"title":"A review on computational models for predicting protein solubility.","authors":"Teerapat Pimtawong, Jun Ren, Jingyu Lee, Hyang-Mi Lee, Dokyun Na","doi":"10.71150/jm.2408001","DOIUrl":"https://doi.org/10.71150/jm.2408001","url":null,"abstract":"<p><p>Protein solubility is a critical factor in the production of recombinant proteins, which are widely used in various industries, including pharmaceuticals, diagnostics, and biotechnology. Predicting protein solubility remains a challenging task due to the complexity of protein structures and the multitude of factors influencing solubility. Recent advances in computational methods, particularly those based on machine learning, have provided powerful tools for predicting protein solubility, thereby reducing the need for extensive experimental trials. This review provides an overview of current computational approaches to predict protein solubility. We discuss the datasets, features, and algorithms employed in these models. The review aims to bridge the gap between computational predictions and experimental validations, fostering the development of more accurate and reliable solubility prediction models that can significantly enhance recombinant protein production.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 1","pages":"e.2408001"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of skin microbiome associated with disease severity in systemic sclerosis.
IF 3.3 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI: 10.71150/jm.2409018
Kyung-Ann Lee, Asad Ul-Haq, Hoonhee Seo, Sujin Jo, Sukyung Kim, Ho-Yeon Song, Hyun-Sook Kim

Systemic sclerosis (SSc) is a chronic autoimmune disorder characterised by skin fibrosis and internal organ involvement. Disruptions in the microbial communities on the skin may contribute to the onset of autoimmune diseases that affect the skin. However, current research on the skin microbiome in SSc is lacking. This study aimed to investigate skin microbiome associated with disease severity in SSc. Skin swabs were collected from the upper limbs of 46 healthy controls (HCs) and 36 patients with SSc. Metagenomic analysis based on the 16S rRNA gene was conducted and stratified by cutaneous subtype and modified Rodnan skin score (mRSS) severity. Significant differences in skin bacterial communities were observed between the HCs and patients with SSc, with further significant variations based on subtype and mRSS severity. The identified biomarkers were Bacteroides and Faecalibacterium for patients with diffuse cutaneous SSc with high mRSS (≥ 10) and Mycobacterium and Parabacteroides for those with low mRSS (< 10). Gardnerella, Abies, Lactobacillus, and Roseburia were the biomarkers in patients with limited cutaneous SSc (lcSS) and high mRSS, whereas Coprococcus predominated in patients with lcSS and low mRSS. Cutaneous subtype analysis identified Pediococcus as a biomarker in the HCs, whereas mRSS analysis revealed the presence of Pseudomonas in conjunction with Pediococcus. In conclusion, patients with SSc exhibit distinct skin microbiota compared with healthy controls. Bacterial composition varies by systemic sclerosis cutaneous subtype and skin thickness.

{"title":"Characteristics of skin microbiome associated with disease severity in systemic sclerosis.","authors":"Kyung-Ann Lee, Asad Ul-Haq, Hoonhee Seo, Sujin Jo, Sukyung Kim, Ho-Yeon Song, Hyun-Sook Kim","doi":"10.71150/jm.2409018","DOIUrl":"https://doi.org/10.71150/jm.2409018","url":null,"abstract":"<p><p>Systemic sclerosis (SSc) is a chronic autoimmune disorder characterised by skin fibrosis and internal organ involvement. Disruptions in the microbial communities on the skin may contribute to the onset of autoimmune diseases that affect the skin. However, current research on the skin microbiome in SSc is lacking. This study aimed to investigate skin microbiome associated with disease severity in SSc. Skin swabs were collected from the upper limbs of 46 healthy controls (HCs) and 36 patients with SSc. Metagenomic analysis based on the 16S rRNA gene was conducted and stratified by cutaneous subtype and modified Rodnan skin score (mRSS) severity. Significant differences in skin bacterial communities were observed between the HCs and patients with SSc, with further significant variations based on subtype and mRSS severity. The identified biomarkers were Bacteroides and Faecalibacterium for patients with diffuse cutaneous SSc with high mRSS (≥ 10) and Mycobacterium and Parabacteroides for those with low mRSS (< 10). Gardnerella, Abies, Lactobacillus, and Roseburia were the biomarkers in patients with limited cutaneous SSc (lcSS) and high mRSS, whereas Coprococcus predominated in patients with lcSS and low mRSS. Cutaneous subtype analysis identified Pediococcus as a biomarker in the HCs, whereas mRSS analysis revealed the presence of Pseudomonas in conjunction with Pediococcus. In conclusion, patients with SSc exhibit distinct skin microbiota compared with healthy controls. Bacterial composition varies by systemic sclerosis cutaneous subtype and skin thickness.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 1","pages":"e.2409018"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Korean Red ginseng enhances ZBP1-mediated cell death to suppress viral protein expression in host defense against Influenza A virus.
IF 3.3 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI: 10.71150/jm.2409007
Jueun Oh, Hayeon Kim, Jihye Lee, Suhyun Kim, Seyun Shin, Young-Eui Kim, Sehee Park, SangJoon Lee

Korean Red ginseng has emerged as a potent candidate in the fight against various viral infections, demonstrating significant efficacy both in vitro and in vivo, particularly against influenza A viruses. Despite substantial evidence of its antiviral properties, the detailed molecular mechanisms through which it reduces viral lethality remain insufficiently understood. Our investigations have highlighted the superior effectiveness of Korean Red ginseng against influenza viruses, outperforming its effects on numerous other viral strains. We aim to uncover the specific mechanisms by which Korean Red ginseng exerts its antiviral effects, focusing on influenza A viruses. Our prior studies have identified the role of Z-DNA-binding protein 1 (ZBP1), a signaling complex involved in inducing programmed cell death in response to influenza virus infection. Given the critical role of ZBP1 as a sensor for viral nucleic acid, we hypothesize that Korean Red ginseng may modulate the ZBP1-derived cell death pathway. This interaction is anticipated to enhance cell death while concurrently suppressing viral protein expression, offering novel insights into the antiviral mechanism of Korean Red ginseng against influenza A viruses.

{"title":"Korean Red ginseng enhances ZBP1-mediated cell death to suppress viral protein expression in host defense against Influenza A virus.","authors":"Jueun Oh, Hayeon Kim, Jihye Lee, Suhyun Kim, Seyun Shin, Young-Eui Kim, Sehee Park, SangJoon Lee","doi":"10.71150/jm.2409007","DOIUrl":"https://doi.org/10.71150/jm.2409007","url":null,"abstract":"<p><p>Korean Red ginseng has emerged as a potent candidate in the fight against various viral infections, demonstrating significant efficacy both in vitro and in vivo, particularly against influenza A viruses. Despite substantial evidence of its antiviral properties, the detailed molecular mechanisms through which it reduces viral lethality remain insufficiently understood. Our investigations have highlighted the superior effectiveness of Korean Red ginseng against influenza viruses, outperforming its effects on numerous other viral strains. We aim to uncover the specific mechanisms by which Korean Red ginseng exerts its antiviral effects, focusing on influenza A viruses. Our prior studies have identified the role of Z-DNA-binding protein 1 (ZBP1), a signaling complex involved in inducing programmed cell death in response to influenza virus infection. Given the critical role of ZBP1 as a sensor for viral nucleic acid, we hypothesize that Korean Red ginseng may modulate the ZBP1-derived cell death pathway. This interaction is anticipated to enhance cell death while concurrently suppressing viral protein expression, offering novel insights into the antiviral mechanism of Korean Red ginseng against influenza A viruses.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 1","pages":"e.2409007"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Optimized Method for Reconstruction of Transcriptional Regulatory Networks in Bacteria Using ChIP-exo and RNA-seq Datasets. 利用 ChIP-exo 和 RNA-seq 数据集重建细菌转录调控网络的优化方法
IF 3.3 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-11-11 DOI: 10.1007/s12275-024-00181-6
Minchang Jang, Joon Young Park, Gayeon Lee, Donghyuk Kim

Transcriptional regulatory networks (TRNs) in bacteria are crucial for elucidating the mechanisms that regulate gene expression and cellular responses to environmental stimuli. These networks delineate the interactions between transcription factors (TFs) and their target genes, thereby uncovering the regulatory processes that modulate gene expression under varying environmental conditions. Analyzing TRNs offers valuable insights into bacterial adaptation, stress responses, and metabolic optimization from an evolutionary standpoint. Additionally, understanding TRNs can drive the development of novel antimicrobial therapies and the engineering of microbial strains for biofuel and bioproduct production. This protocol integrates advanced data analysis pipelines, including ChEAP, DEOCSU, and DESeq2, to analyze omics datasets that encompass genome-wide TF binding sites and transcriptome profiles derived from ChIP-exo and RNA-seq experiments. This approach minimizes both the time required and the risk of bias, making it accessible to non-expert users. Key steps in the protocol include preprocessing and peak calling from ChIP-exo data, differential expression analysis of RNA-seq data, and motif and regulon analysis. This method offers a comprehensive and efficient framework for TRN reconstruction across various bacterial strains, enhancing both the accuracy and reliability of the analysis while providing valuable insights for basic and applied research.

细菌中的转录调控网络(TRN)对于阐明基因表达调控机制和细胞对环境刺激的反应至关重要。这些网络描述了转录因子(TF)与其靶基因之间的相互作用,从而揭示了在不同环境条件下调节基因表达的调控过程。从进化的角度来看,分析 TRN 对细菌的适应、应激反应和代谢优化提供了宝贵的见解。此外,了解 TRNs 还能推动新型抗菌疗法的开发,以及用于生物燃料和生物产品生产的微生物菌株工程。该方案整合了先进的数据分析管道,包括 ChEAP、DEOCSU 和 DESeq2,以分析包括全基因组 TF 结合位点和来自 ChIP-exo 和 RNA-seq 实验的转录组图谱的 omics 数据集。这种方法最大限度地减少了所需时间和偏差风险,使非专业用户也能使用。该方案的关键步骤包括 ChIP-exo 数据的预处理和峰值调用、RNA-seq 数据的差异表达分析,以及母题和调控子分析。这种方法为各种细菌菌株的 TRN 重建提供了一个全面而高效的框架,既提高了分析的准确性和可靠性,又为基础研究和应用研究提供了有价值的见解。
{"title":"An Optimized Method for Reconstruction of Transcriptional Regulatory Networks in Bacteria Using ChIP-exo and RNA-seq Datasets.","authors":"Minchang Jang, Joon Young Park, Gayeon Lee, Donghyuk Kim","doi":"10.1007/s12275-024-00181-6","DOIUrl":"10.1007/s12275-024-00181-6","url":null,"abstract":"<p><p>Transcriptional regulatory networks (TRNs) in bacteria are crucial for elucidating the mechanisms that regulate gene expression and cellular responses to environmental stimuli. These networks delineate the interactions between transcription factors (TFs) and their target genes, thereby uncovering the regulatory processes that modulate gene expression under varying environmental conditions. Analyzing TRNs offers valuable insights into bacterial adaptation, stress responses, and metabolic optimization from an evolutionary standpoint. Additionally, understanding TRNs can drive the development of novel antimicrobial therapies and the engineering of microbial strains for biofuel and bioproduct production. This protocol integrates advanced data analysis pipelines, including ChEAP, DEOCSU, and DESeq2, to analyze omics datasets that encompass genome-wide TF binding sites and transcriptome profiles derived from ChIP-exo and RNA-seq experiments. This approach minimizes both the time required and the risk of bias, making it accessible to non-expert users. Key steps in the protocol include preprocessing and peak calling from ChIP-exo data, differential expression analysis of RNA-seq data, and motif and regulon analysis. This method offers a comprehensive and efficient framework for TRN reconstruction across various bacterial strains, enhancing both the accuracy and reliability of the analysis while providing valuable insights for basic and applied research.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1075-1088"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut Microbiota Dysbiosis Facilitates Susceptibility to Bloodstream Infection. 肠道菌群失调易引起血液感染。
IF 3.3 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-02 DOI: 10.1007/s12275-024-00190-5
Xiaomin Lin, Chun Lin, Xin Li, Fen Yao, Xiaoling Guo, Meimei Wang, Mi Zeng, Yumeng Yuan, Qingdong Xie, Xudong Huang, Xiaoyang Jiao

To study the role of intestinal flora in the development of bloodstream infections (BSIs). 42 patients and 19 healthy controls (HCs) were screened into the study and their intestinal flora was measured by 16S rRNA gene sequencing. The bacterial diversity was significantly lower in the BSI group compared with that in the HCs (P < 0.001), and beta diversity was significantly differentiated between the two groups (PERMANOVA, P = 0.001). The four keystone species [Roseburia, Faecalibacterium, Prevotella, and Enterococcus (LDA > 4)] differed significantly between the two groups. Dysbiosis of fecal microbial ecology is a common condition present in patients with BSI. The proliferation of certain pathogens or reduction of SCFA-producing bacteria would cause susceptibility to BSI.

目的:探讨肠道菌群在血流感染(bsi)发生中的作用。筛选42例患者和19例健康对照(hc),通过16S rRNA基因测序测定其肠道菌群。BSI组的细菌多样性明显低于hc组(P < 4)],两组间差异有显著性。粪便微生物生态失调是BSI患者的常见情况。某些病原体的增殖或产生scfa的细菌的减少会导致对BSI的易感性。
{"title":"Gut Microbiota Dysbiosis Facilitates Susceptibility to Bloodstream Infection.","authors":"Xiaomin Lin, Chun Lin, Xin Li, Fen Yao, Xiaoling Guo, Meimei Wang, Mi Zeng, Yumeng Yuan, Qingdong Xie, Xudong Huang, Xiaoyang Jiao","doi":"10.1007/s12275-024-00190-5","DOIUrl":"10.1007/s12275-024-00190-5","url":null,"abstract":"<p><p>To study the role of intestinal flora in the development of bloodstream infections (BSIs). 42 patients and 19 healthy controls (HCs) were screened into the study and their intestinal flora was measured by 16S rRNA gene sequencing. The bacterial diversity was significantly lower in the BSI group compared with that in the HCs (P < 0.001), and beta diversity was significantly differentiated between the two groups (PERMANOVA, P = 0.001). The four keystone species [Roseburia, Faecalibacterium, Prevotella, and Enterococcus (LDA > 4)] differed significantly between the two groups. Dysbiosis of fecal microbial ecology is a common condition present in patients with BSI. The proliferation of certain pathogens or reduction of SCFA-producing bacteria would cause susceptibility to BSI.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1113-1124"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1