Information dynamics of in silico EEG Brain Waves: Insights into oscillations and functions.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS PLoS Computational Biology Pub Date : 2024-09-05 eCollection Date: 2024-09-01 DOI:10.1371/journal.pcbi.1012369
Gustavo Menesse, Joaquín J Torres
{"title":"Information dynamics of in silico EEG Brain Waves: Insights into oscillations and functions.","authors":"Gustavo Menesse, Joaquín J Torres","doi":"10.1371/journal.pcbi.1012369","DOIUrl":null,"url":null,"abstract":"<p><p>The relation between electroencephalography (EEG) rhythms, brain functions, and behavioral correlates is well-established. Some physiological mechanisms underlying rhythm generation are understood, enabling the replication of brain rhythms in silico. This offers a pathway to explore connections between neural oscillations and specific neuronal circuits, potentially yielding fundamental insights into the functional properties of brain waves. Information theory frameworks, such as Integrated Information Decomposition (Φ-ID), relate dynamical regimes with informational properties, providing deeper insights into neuronal dynamic functions. Here, we investigate wave emergence in an excitatory/inhibitory (E/I) balanced network of integrate and fire neurons with short-term synaptic plasticity. This model produces a diverse range of EEG-like rhythms, from low δ waves to high-frequency oscillations. Through Φ-ID, we analyze the network's information dynamics and its relation with different emergent rhythms, elucidating the system's suitability for functions such as robust information transfer, storage, and parallel operation. Furthermore, our study helps to identify regimes that may resemble pathological states due to poor informational properties and high randomness. We found, e.g., that in silico β and δ waves are associated with maximum information transfer in inhibitory and excitatory neuron populations, respectively, and that the coexistence of excitatory θ, α, and β waves is associated to information storage. Additionally, we observed that high-frequency oscillations can exhibit either high or poor informational properties, potentially shedding light on ongoing discussions regarding physiological versus pathological high-frequency oscillations. In summary, our study demonstrates that dynamical regimes with similar oscillations may exhibit vastly different information dynamics. Characterizing information dynamics within these regimes serves as a potent tool for gaining insights into the functions of complex neuronal networks. Finally, our findings suggest that the use of information dynamics in both model and experimental data analysis, could help discriminate between oscillations associated with cognitive functions and those linked to neuronal disorders.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012369","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The relation between electroencephalography (EEG) rhythms, brain functions, and behavioral correlates is well-established. Some physiological mechanisms underlying rhythm generation are understood, enabling the replication of brain rhythms in silico. This offers a pathway to explore connections between neural oscillations and specific neuronal circuits, potentially yielding fundamental insights into the functional properties of brain waves. Information theory frameworks, such as Integrated Information Decomposition (Φ-ID), relate dynamical regimes with informational properties, providing deeper insights into neuronal dynamic functions. Here, we investigate wave emergence in an excitatory/inhibitory (E/I) balanced network of integrate and fire neurons with short-term synaptic plasticity. This model produces a diverse range of EEG-like rhythms, from low δ waves to high-frequency oscillations. Through Φ-ID, we analyze the network's information dynamics and its relation with different emergent rhythms, elucidating the system's suitability for functions such as robust information transfer, storage, and parallel operation. Furthermore, our study helps to identify regimes that may resemble pathological states due to poor informational properties and high randomness. We found, e.g., that in silico β and δ waves are associated with maximum information transfer in inhibitory and excitatory neuron populations, respectively, and that the coexistence of excitatory θ, α, and β waves is associated to information storage. Additionally, we observed that high-frequency oscillations can exhibit either high or poor informational properties, potentially shedding light on ongoing discussions regarding physiological versus pathological high-frequency oscillations. In summary, our study demonstrates that dynamical regimes with similar oscillations may exhibit vastly different information dynamics. Characterizing information dynamics within these regimes serves as a potent tool for gaining insights into the functions of complex neuronal networks. Finally, our findings suggest that the use of information dynamics in both model and experimental data analysis, could help discriminate between oscillations associated with cognitive functions and those linked to neuronal disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑电图脑电波的信息动态:洞察振荡和功能
脑电图(EEG)节律、大脑功能和行为相关性之间的关系已得到证实。人们已经了解节奏产生的一些生理机制,从而能够在硅学中复制大脑节奏。这为探索神经振荡与特定神经元回路之间的联系提供了一条途径,有可能从根本上揭示脑电波的功能特性。信息理论框架,如综合信息分解(Φ-ID),将动态机制与信息属性联系起来,为深入了解神经元动态功能提供了可能。在这里,我们研究了具有短期突触可塑性的兴奋/抑制(E/I)平衡整合与发射神经元网络中的波出现。该模型可产生多种类似脑电图的节律,从低δ波到高频振荡。通过Φ-ID,我们分析了网络的信息动态及其与不同出现的节律之间的关系,阐明了该系统是否适用于稳健的信息传输、存储和并行操作等功能。此外,我们的研究还有助于识别因信息属性差和随机性高而可能类似病态的状态。例如,我们发现,在抑制性和兴奋性神经元群中,硅β波和δ波分别与最大信息传递相关,而兴奋性θ波、α波和β波的共存与信息存储相关。此外,我们还观察到,高频振荡可以表现出较高或较低的信息属性,这可能会对目前关于生理性高频振荡与病理性高频振荡的讨论有所启发。总之,我们的研究表明,具有相似振荡的动力机制可能表现出截然不同的信息动态。描述这些机制中的信息动态是深入了解复杂神经元网络功能的有效工具。最后,我们的研究结果表明,在模型和实验数据分析中使用信息动力学,有助于区分与认知功能相关的振荡和与神经元紊乱相关的振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
A computational analysis of the oncogenic and anti-tumor immunity role of P4HA3 in human cancers. Assessing the effect of model specification and prior sensitivity on Bayesian tests of temporal signal. During haptic communication, the central nervous system compensates distinctly for delay and noise. Structure-aware annotation of leucine-rich repeat domains. A mechanistic model of in vitro plasma activation to evaluate therapeutic kallikrein-kinin system inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1