Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration.

IF 7.9 2区 医学 Q1 IMMUNOLOGY Seminars in Immunopathology Pub Date : 2024-09-06 DOI:10.1007/s00281-024-01024-7
Paolo Rosales, Daiana Vitale, Antonella Icardi, Ina Sevic, Laura Alaniz
{"title":"Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration.","authors":"Paolo Rosales, Daiana Vitale, Antonella Icardi, Ina Sevic, Laura Alaniz","doi":"10.1007/s00281-024-01024-7","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last few decades, scientists have recognized the critical role that various components of the extracellular matrix (ECM) play in maintaining homeostatic immunity. Besides, dysregulation in the synthesis or degradation levels of these components directly impacts the mechanisms of immune response during tissue injury caused by tumor processes or the regeneration of the tissue itself in the event of damage. ECM is a complex network of protein compounds, proteoglycans and glycosaminoglycans (GAGs). Hyaluronic acid (HA) is one of the major GAGs of this network, whose metabolism is strictly physiologically regulated and quickly altered in injury processes, affecting the behavior of different cells, from stem cells to differentiated immune cells. In this revision we discuss how the native or chemically modified HA interacts with its specific receptors and modulates intra and intercellular communication of immune cells, focusing on cancer and tissue regeneration conditions.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"46 5","pages":"15"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Immunopathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00281-024-01024-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last few decades, scientists have recognized the critical role that various components of the extracellular matrix (ECM) play in maintaining homeostatic immunity. Besides, dysregulation in the synthesis or degradation levels of these components directly impacts the mechanisms of immune response during tissue injury caused by tumor processes or the regeneration of the tissue itself in the event of damage. ECM is a complex network of protein compounds, proteoglycans and glycosaminoglycans (GAGs). Hyaluronic acid (HA) is one of the major GAGs of this network, whose metabolism is strictly physiologically regulated and quickly altered in injury processes, affecting the behavior of different cells, from stem cells to differentiated immune cells. In this revision we discuss how the native or chemically modified HA interacts with its specific receptors and modulates intra and intercellular communication of immune cells, focusing on cancer and tissue regeneration conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透明质酸及其化学衍生物在免疫平衡、癌症和组织再生中的作用。
在过去的几十年里,科学家们已经认识到细胞外基质(ECM)的各种成分在维持同态免疫方面发挥着至关重要的作用。此外,这些成分的合成或降解水平失调会直接影响肿瘤过程造成组织损伤时的免疫反应机制,或组织本身受损时的再生机制。ECM 是由蛋白质化合物、蛋白聚糖和糖胺聚糖 (GAG) 组成的复杂网络。透明质酸(HA)是这一网络中的主要 GAGs 之一,其新陈代谢受到严格的生理调控,并在损伤过程中迅速改变,影响从干细胞到分化免疫细胞等不同细胞的行为。在本次修订中,我们将讨论原生或化学修饰的 HA 如何与其特定受体相互作用,并调节免疫细胞的细胞内和细胞间通信,重点关注癌症和组织再生情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seminars in Immunopathology
Seminars in Immunopathology 医学-病理学
CiteScore
19.80
自引率
2.20%
发文量
69
审稿时长
12 months
期刊介绍: The aim of Seminars in Immunopathology is to bring clinicians and pathologists up-to-date on developments in the field of immunopathology.For this purpose topical issues will be organized usually with the help of a guest editor.Recent developments are summarized in review articles by authors who have personally contributed to the specific topic.
期刊最新文献
Glycan diversity in ovarian cancer: Unraveling the immune interplay and therapeutic prospects. Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration. The fetal programming effect of maternal immune activation (MIA) on the offspring's immune system. The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits. Advances in manufacturing chimeric antigen receptor immune cell therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1