Davide Pigoli, Kieran Baker, Jobie Budd, Lorraine Butler, Harry Coppock, Sabrina Egglestone, Steven G Gilmour, Chris Holmes, David Hurley, Radka Jersakova, Ivan Kiskin, Vasiliki Koutra, Jonathon Mellor, George Nicholson, Joe Packham, Selina Patel, Richard Payne, Stephen J Roberts, Björn W Schuller, Ana Tendero-Cañadas, Tracey Thornley, Alexander Titcomb
{"title":"Assessing the Performance of Machine Learning Methods Trained on Public Health Observational Data: A Case Study From COVID-19.","authors":"Davide Pigoli, Kieran Baker, Jobie Budd, Lorraine Butler, Harry Coppock, Sabrina Egglestone, Steven G Gilmour, Chris Holmes, David Hurley, Radka Jersakova, Ivan Kiskin, Vasiliki Koutra, Jonathon Mellor, George Nicholson, Joe Packham, Selina Patel, Richard Payne, Stephen J Roberts, Björn W Schuller, Ana Tendero-Cañadas, Tracey Thornley, Alexander Titcomb","doi":"10.1002/sim.10211","DOIUrl":null,"url":null,"abstract":"<p><p>From early in the coronavirus disease 2019 (COVID-19) pandemic, there was interest in using machine learning methods to predict COVID-19 infection status based on vocal audio signals, for example, cough recordings. However, early studies had limitations in terms of data collection and of how the performances of the proposed predictive models were assessed. This article describes how these limitations have been overcome in a study carried out by the Turing-RSS Health Data Laboratory and the UK Health Security Agency. As part of the study, the UK Health Security Agency collected a dataset of acoustic recordings, SARS-CoV-2 infection status and extensive study participant meta-data. This allowed us to rigorously assess state-of-the-art machine learning techniques to predict SARS-CoV-2 infection status based on vocal audio signals. The lessons learned from this project should inform future studies on statistical evaluation methods to assess the performance of machine learning techniques for public health tasks.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"4861-4871"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10211","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
From early in the coronavirus disease 2019 (COVID-19) pandemic, there was interest in using machine learning methods to predict COVID-19 infection status based on vocal audio signals, for example, cough recordings. However, early studies had limitations in terms of data collection and of how the performances of the proposed predictive models were assessed. This article describes how these limitations have been overcome in a study carried out by the Turing-RSS Health Data Laboratory and the UK Health Security Agency. As part of the study, the UK Health Security Agency collected a dataset of acoustic recordings, SARS-CoV-2 infection status and extensive study participant meta-data. This allowed us to rigorously assess state-of-the-art machine learning techniques to predict SARS-CoV-2 infection status based on vocal audio signals. The lessons learned from this project should inform future studies on statistical evaluation methods to assess the performance of machine learning techniques for public health tasks.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.