Micaela Andrea Navarro, Cristina Navarro, Luis Eduardo Hernández, María Garnica, José Manuel Franco-Zorrilla, Yogev Burko, Sara González-Serrano, José M García-Mina, José Pruneda-Paz, Joanne Chory, Antonio Leyva
{"title":"GLABRA2 transcription factor integrates arsenic tolerance with epidermal cell fate determination.","authors":"Micaela Andrea Navarro, Cristina Navarro, Luis Eduardo Hernández, María Garnica, José Manuel Franco-Zorrilla, Yogev Burko, Sara González-Serrano, José M García-Mina, José Pruneda-Paz, Joanne Chory, Antonio Leyva","doi":"10.1111/nph.20099","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic poses a global threat to living organisms, compromising crop security and yield. Limited understanding of the transcriptional network integrating arsenic-tolerance mechanisms with plant developmental responses hinders the development of strategies against this toxic metalloid. Here, we conducted a high-throughput yeast one-hybrid assay using as baits the promoter region from the arsenic-inducible genes ARQ1 and ASK18 from Arabidopsis thaliana, coupled with a transcriptomic analysis, to uncover novel transcriptional regulators of the arsenic response. We identified the GLABRA2 (GL2) transcription factor as a novel regulator of arsenic tolerance, revealing a wider regulatory role beyond its established function as a repressor of root hair formation. Furthermore, we found that ANTHOCYANINLESS2 (ANL2), a GL2 subfamily member, acts redundantly with this transcription factor in the regulation of arsenic signaling. Both transcription factors act as repressors of arsenic response. gl2 and anl2 mutants exhibit enhanced tolerance and reduced arsenic accumulation. Transcriptional analysis in the gl2 mutant unveils potential regulators of arsenic tolerance. These findings highlight GL2 and ANL2 as novel integrators of the arsenic response with developmental outcomes, offering insights for developing safer crops with reduced arsenic content and increased tolerance to this hazardous metalloid.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"1882-1900"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20099","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic poses a global threat to living organisms, compromising crop security and yield. Limited understanding of the transcriptional network integrating arsenic-tolerance mechanisms with plant developmental responses hinders the development of strategies against this toxic metalloid. Here, we conducted a high-throughput yeast one-hybrid assay using as baits the promoter region from the arsenic-inducible genes ARQ1 and ASK18 from Arabidopsis thaliana, coupled with a transcriptomic analysis, to uncover novel transcriptional regulators of the arsenic response. We identified the GLABRA2 (GL2) transcription factor as a novel regulator of arsenic tolerance, revealing a wider regulatory role beyond its established function as a repressor of root hair formation. Furthermore, we found that ANTHOCYANINLESS2 (ANL2), a GL2 subfamily member, acts redundantly with this transcription factor in the regulation of arsenic signaling. Both transcription factors act as repressors of arsenic response. gl2 and anl2 mutants exhibit enhanced tolerance and reduced arsenic accumulation. Transcriptional analysis in the gl2 mutant unveils potential regulators of arsenic tolerance. These findings highlight GL2 and ANL2 as novel integrators of the arsenic response with developmental outcomes, offering insights for developing safer crops with reduced arsenic content and increased tolerance to this hazardous metalloid.
期刊介绍:
New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.