首页 > 最新文献

New Phytologist最新文献

英文 中文
Vanessa E. Rubio. Vanessa E. Rubio.
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2025-02-01 Epub Date: 2024-10-06 DOI: 10.1111/nph.20176
{"title":"Vanessa E. Rubio.","authors":"","doi":"10.1111/nph.20176","DOIUrl":"10.1111/nph.20176","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"949-950"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex allocation: the effect of population size and structure, fertilisation success, and propagule dimorphism.
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2025-02-01 Epub Date: 2024-11-28 DOI: 10.1111/nph.20239
Jussi Lehtonen
{"title":"Sex allocation: the effect of population size and structure, fertilisation success, and propagule dimorphism.","authors":"Jussi Lehtonen","doi":"10.1111/nph.20239","DOIUrl":"10.1111/nph.20239","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"934-938"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How does plant chemodiversity evolve? Testing five hypotheses in one population genetic model. 植物化学多样性是如何进化的?在一个种群遗传模型中测试五个假设
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2025-02-01 Epub Date: 2024-09-05 DOI: 10.1111/nph.20096
Meike J Wittmann, Andrea Bräutigam

Plant chemodiversity, the diversity of plant-specialized metabolites, is an important dimension of biodiversity. However, there are so far few mathematical models to test verbal hypotheses on how chemodiversity evolved. Here, we develop such a model to test predictions of five hypotheses: the 'fluctuating selection hypothesis', the 'dominance reversal hypothesis', the interaction diversity hypothesis, the synergy hypothesis, and the screening hypothesis. We build a population genetic model of a plant population attacked by herbivore species whose occurrence fluctuates over time. We study the model using mathematical analysis and individual-based simulations. As predicted by the 'dominance reversal hypothesis', chemodiversity can be maintained if alleles conferring a defense metabolite are dominant with respect to the benefits, but recessive with respect to costs. However, even smaller changes in dominance can maintain polymorphism. Moreover, our results underpin and elaborate predictions of the synergy and interaction diversity hypotheses, and, to the extent that our model can address it, the screening hypotheses. By contrast, we found only partial support for the 'fluctuating selection hypothesis'. In summary, we have developed a flexible model and tested various verbal models for the evolution of chemodiversity. Next, more mechanistic models are needed that explicitly consider the organization of metabolic pathways.

植物化学多样性,即植物专用代谢物的多样性,是生物多样性的一个重要方面。然而,迄今为止,很少有数学模型可以检验化学多样性如何演化的口头假说。在这里,我们建立了这样一个模型来检验五个假说的预测:"波动选择假说"、"优势逆转假说"、相互作用多样性假说、协同作用假说和筛选假说。我们建立了一个植物种群的种群遗传模型,该植物种群受到食草动物的攻击,而食草动物的出现率会随着时间的推移而波动。我们通过数学分析和基于个体的模拟对该模型进行了研究。正如 "优势逆转假说 "所预测的那样,如果赋予防御代谢物的等位基因在收益方面是显性的,而在成本方面是隐性的,那么化学多样性就可以维持。然而,即使是较小的优势变化也能维持多态性。此外,我们的研究结果支持并详细阐述了协同作用假说和相互作用多样性假说的预测,并在我们的模型能够解决的范围内支持并详细阐述了筛选假说的预测。相比之下,我们只发现了对 "波动选择假说 "的部分支持。总之,我们建立了一个灵活的模型,并对化学多样性进化的各种口头模型进行了测试。下一步,我们需要更多明确考虑代谢途径组织的机理模型。
{"title":"How does plant chemodiversity evolve? Testing five hypotheses in one population genetic model.","authors":"Meike J Wittmann, Andrea Bräutigam","doi":"10.1111/nph.20096","DOIUrl":"10.1111/nph.20096","url":null,"abstract":"<p><p>Plant chemodiversity, the diversity of plant-specialized metabolites, is an important dimension of biodiversity. However, there are so far few mathematical models to test verbal hypotheses on how chemodiversity evolved. Here, we develop such a model to test predictions of five hypotheses: the 'fluctuating selection hypothesis', the 'dominance reversal hypothesis', the interaction diversity hypothesis, the synergy hypothesis, and the screening hypothesis. We build a population genetic model of a plant population attacked by herbivore species whose occurrence fluctuates over time. We study the model using mathematical analysis and individual-based simulations. As predicted by the 'dominance reversal hypothesis', chemodiversity can be maintained if alleles conferring a defense metabolite are dominant with respect to the benefits, but recessive with respect to costs. However, even smaller changes in dominance can maintain polymorphism. Moreover, our results underpin and elaborate predictions of the synergy and interaction diversity hypotheses, and, to the extent that our model can address it, the screening hypotheses. By contrast, we found only partial support for the 'fluctuating selection hypothesis'. In summary, we have developed a flexible model and tested various verbal models for the evolution of chemodiversity. Next, more mechanistic models are needed that explicitly consider the organization of metabolic pathways.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"1302-1314"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New mechanism of strigolactone-regulated cold tolerance in tomato. 芪醇内酯调节番茄耐寒性的新机制
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2025-02-01 Epub Date: 2024-09-30 DOI: 10.1111/nph.20165
Qianqian Li, Bing Wang, Hong Yu
{"title":"New mechanism of strigolactone-regulated cold tolerance in tomato.","authors":"Qianqian Li, Bing Wang, Hong Yu","doi":"10.1111/nph.20165","DOIUrl":"10.1111/nph.20165","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"921-923"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicroRNA399s and strigolactones mediate systemic phosphate signaling between dodder-connected host plants and control association of host plants with rhizosphere microbes. MicroRNA399s 和绞股蓝内酯介导菟丝子寄主植物之间的系统磷酸盐信号传递,并控制寄主植物与根瘤微生物的结合。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2025-02-01 Epub Date: 2024-11-18 DOI: 10.1111/nph.20266
Man Zhao, Xijie Zheng, Zhongxiang Su, Guojing Shen, Yuxing Xu, Zerui Feng, Wenxing Li, Shuhan Zhang, Guoyan Cao, Jingxiong Zhang, Jianqiang Wu

A dodder (Cuscuta) often simultaneously parasitizes two or more adjacent hosts. Phosphate (Pi) deficiency is a common stress for plants, and plants often interact with soil microbes, including arbuscular mycorrhizal fungi (AMF), to cope with Pi stress. Little is known about whether dodder transmits Pi deficiency-induced systemic signals between different hosts. In this study, dodder-connected plant clusters, each composed of two tobacco (Nicotiana tabacum) plants connected by a dodder, were established, and in each cluster, one of the two tobacco plants was treated with Pi starvation. AMF colonization efficiency, rhizosphere bacterial community, and transcriptome were analyzed in the other dodder-connected Pi-replete tobacco plant to study the functions of interplant Pi signals. We found that dodder transfers Pi starvation-induced systemic signals between host plants, resulting in enhanced AMF colonization, changes of rhizosphere bacterial communities, and alteration of transcriptomes in the roots of Pi-replete plants. Importantly, genetic analyses indicated that microRNA399s (miR399s) and strigolactones suppress the systemic Pi signals and negatively affect AMF colonization in the Pi-replete plants. These findings provide new insight into the ecological role of dodder in mediating host-host and host-microbe interactions and highlight the importance of strigolactone and miR399 pathways in systemic Pi signaling.

菟丝子(Cuscuta)经常同时寄生于两个或两个以上相邻的寄主。磷酸盐(Pi)缺乏对植物来说是一种常见的胁迫,植物经常与土壤微生物(包括丛枝菌根真菌(AMF))相互作用,以应对Pi胁迫。人们对菟丝子是否会在不同宿主之间传递π缺乏引起的系统信号知之甚少。本研究建立了由两株烟草(Nicotiana tabacum)植物组成的菟丝子连接植物集群,在每个集群中,两株烟草植物中的一株接受π饥饿处理。我们分析了与菟丝子连接的另一株烟草植株的AMF定殖效率、根瘤菌群落和转录组,以研究植株间Pi信号的功能。我们发现,菟丝子会在寄主植物之间传递π饥饿诱导的系统信号,导致π缺失植株根部的AMF定殖能力增强、根瘤细菌群落发生变化以及转录组发生改变。重要的是,遗传分析表明,microRNA399s(miR399s)和绞股蓝内酯抑制了系统π信号,并对π缺失植物的AMF定殖产生了负面影响。这些发现为了解菟丝子在介导宿主-宿主和宿主-微生物相互作用中的生态作用提供了新的视角,并突出了糙内酯和 miR399 途径在系统π信号传导中的重要性。
{"title":"MicroRNA399s and strigolactones mediate systemic phosphate signaling between dodder-connected host plants and control association of host plants with rhizosphere microbes.","authors":"Man Zhao, Xijie Zheng, Zhongxiang Su, Guojing Shen, Yuxing Xu, Zerui Feng, Wenxing Li, Shuhan Zhang, Guoyan Cao, Jingxiong Zhang, Jianqiang Wu","doi":"10.1111/nph.20266","DOIUrl":"10.1111/nph.20266","url":null,"abstract":"<p><p>A dodder (Cuscuta) often simultaneously parasitizes two or more adjacent hosts. Phosphate (Pi) deficiency is a common stress for plants, and plants often interact with soil microbes, including arbuscular mycorrhizal fungi (AMF), to cope with Pi stress. Little is known about whether dodder transmits Pi deficiency-induced systemic signals between different hosts. In this study, dodder-connected plant clusters, each composed of two tobacco (Nicotiana tabacum) plants connected by a dodder, were established, and in each cluster, one of the two tobacco plants was treated with Pi starvation. AMF colonization efficiency, rhizosphere bacterial community, and transcriptome were analyzed in the other dodder-connected Pi-replete tobacco plant to study the functions of interplant Pi signals. We found that dodder transfers Pi starvation-induced systemic signals between host plants, resulting in enhanced AMF colonization, changes of rhizosphere bacterial communities, and alteration of transcriptomes in the roots of Pi-replete plants. Importantly, genetic analyses indicated that microRNA399s (miR399s) and strigolactones suppress the systemic Pi signals and negatively affect AMF colonization in the Pi-replete plants. These findings provide new insight into the ecological role of dodder in mediating host-host and host-microbe interactions and highlight the importance of strigolactone and miR399 pathways in systemic Pi signaling.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"1263-1276"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional characterization reveals the importance of Arabidopsis ECA4 and EPSIN3 in clathrin mediated endocytosis and wall structure in apical growing cells. 功能表征揭示了拟南芥 ECA4 和 EPSIN3 在凝集素介导的内吞和顶端生长细胞壁结构中的重要性。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2025-02-01 Epub Date: 2024-11-18 DOI: 10.1111/nph.20282
Rita Teresa Teixeira, Dario Marchese, Patrick J Duckney, Fernando Vaz Dias, Ana P Carapeto, Mariana Louro, Marta Sousa Silva, Carlos Cordeiro, Mário S Rodrigues, Rui Malhó

Localized clathrin mediated endocytosis is vital for secretion and wall deposition in apical growing plant cells. Adaptor and signalling proteins, along with phosphoinositides, are known to play a regulatory, yet poorly defined role in this process. Here we investigated the function of Arabidopsis ECA4 and EPSIN3, putative mediators of the process, in pollen tubes and root hairs. Homozygous eca4 and epsin3 plants exhibited altered pollen tube morphology (in vitro) and self-pollination led to fewer seeds and shorter siliques. These effects were augmented in eca4/epsin3 double mutant and quantitative polymerase chain reaction data revealed changes in phosphoinositide metabolism and flowering genes suggestive of a synergistic action. No visible changes were observed in root morphology, but atomic force microscopy in mutant root hairs showed altered structural stiffness. Imaging and FRET-FLIM analysis of ECA4 and EPSIN3 X-FP constructs revealed that both proteins interact at the plasma membrane but exhibit slightly different intracellular localization. FT-ICR-MS metabolomic analysis of mutant cells showed changes in lipids, amino acids and carbohydrate composition consistent with a role in secretion and growth. Characterization of double mutants of eca4 and epsin3 with phospholipase C genes (plc5, plc7) indicates that phosphoinositides (e.g. PtdIns(4,5)P2) are fundamental for a combined and complementary role of ECA4-EPSIN3 in cell secretion.

局部凝集素介导的内吞对植物顶端生长细胞的分泌和壁沉积至关重要。众所周知,适配蛋白和信号蛋白以及磷脂在这一过程中发挥着调节作用,但其作用尚不明确。在这里,我们研究了拟南芥 ECA4 和 EPSIN3 在花粉管和根毛中的功能。同基因 eca4 和 epsin3 植物的花粉管形态(体外)发生了改变,自花授粉会导致种子减少和蓇葖果变短。这些影响在 eca4/epsin3 双突变体中得到了加强,定量聚合酶链反应数据显示,磷脂代谢和开花基因发生了变化,表明存在协同作用。根的形态没有明显变化,但原子力显微镜观察发现突变体根毛的结构硬度发生了变化。对 ECA4 和 EPSIN3 X-FP 构建体的成像和 FRET-FLIM 分析表明,这两种蛋白质在质膜上相互作用,但在细胞内的定位略有不同。对突变体细胞进行的 FT-ICR-MS 代谢组学分析表明,脂质、氨基酸和碳水化合物组成的变化与分泌和生长中的作用一致。带有磷脂酶 C 基因(plc5、plc7)的 ECA4 和 EPSIN3 双突变体的特征表明,磷脂肌醇(如 PtdIns(4,5)P2)是 ECA4-EPSIN3 在细胞分泌中发挥联合和互补作用的基础。
{"title":"Functional characterization reveals the importance of Arabidopsis ECA4 and EPSIN3 in clathrin mediated endocytosis and wall structure in apical growing cells.","authors":"Rita Teresa Teixeira, Dario Marchese, Patrick J Duckney, Fernando Vaz Dias, Ana P Carapeto, Mariana Louro, Marta Sousa Silva, Carlos Cordeiro, Mário S Rodrigues, Rui Malhó","doi":"10.1111/nph.20282","DOIUrl":"10.1111/nph.20282","url":null,"abstract":"<p><p>Localized clathrin mediated endocytosis is vital for secretion and wall deposition in apical growing plant cells. Adaptor and signalling proteins, along with phosphoinositides, are known to play a regulatory, yet poorly defined role in this process. Here we investigated the function of Arabidopsis ECA4 and EPSIN3, putative mediators of the process, in pollen tubes and root hairs. Homozygous eca4 and epsin3 plants exhibited altered pollen tube morphology (in vitro) and self-pollination led to fewer seeds and shorter siliques. These effects were augmented in eca4/epsin3 double mutant and quantitative polymerase chain reaction data revealed changes in phosphoinositide metabolism and flowering genes suggestive of a synergistic action. No visible changes were observed in root morphology, but atomic force microscopy in mutant root hairs showed altered structural stiffness. Imaging and FRET-FLIM analysis of ECA4 and EPSIN3 X-FP constructs revealed that both proteins interact at the plasma membrane but exhibit slightly different intracellular localization. FT-ICR-MS metabolomic analysis of mutant cells showed changes in lipids, amino acids and carbohydrate composition consistent with a role in secretion and growth. Characterization of double mutants of eca4 and epsin3 with phospholipase C genes (plc5, plc7) indicates that phosphoinositides (e.g. PtdIns(4,5)P<sub>2</sub>) are fundamental for a combined and complementary role of ECA4-EPSIN3 in cell secretion.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"1056-1071"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural variation in GhROPGEF5 contributes to longer and stronger cotton fibers. GhROPGEF5 的自然变异可使棉纤维更长、更结实。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2025-02-01 Epub Date: 2024-11-22 DOI: 10.1111/nph.20286
Wenwen Wang, Dexin Liu, Tingfu Zhang, Kai Guo, Xueying Liu, Dajun Liu, Lei Chen, Jinming Yang, Zhonghua Teng, Ying Zou, Junrui Ma, Yi Wang, Xinrui Yang, Xin Guo, Xiaoting Sun, Jian Zhang, Yuehua Xiao, Andrew H Paterson, Zhengsheng Zhang

Length and strength are key parameters impacting the quality of textiles that can be produced from cotton fibers, and therefore are important considerations in cotton breeding. Through map-based cloning and function analysis, we demonstrated that GhROPGEF5, encoding a ROP guanine nucleotide exchange factor, was the gene controlling fiber length and strength at qFSA10.1. Evolutionary analysis revealed that a base deletion in the third exon of GhROPGEF5 resulting in superior fiber length and strength was a rare mutation occurring in a tiny percentage of Upland cottons, with reduced fiber yield hindering its spread. GhROPGEF5 interacted with and activated GhROP10. Knockout or mutation of GhROPGEF5 resulted a loss of the ability to activate GhROP10. Knockout of GhROPGEF5 or GhROP10 affected the expression of many downstream genes associated with fiber elongation and secondary wall deposition, prolonged fiber elongation and delayed secondary wall deposition, producing denser fiber helices and increasing fiber length and strength. These results revealed new molecular aspects of fiber development and revealed a rare favorable allele for improving fiber quality in cotton breeding.

长度和强度是影响棉纤维纺织品质量的关键参数,因此也是棉花育种的重要考虑因素。通过基于图谱的克隆和功能分析,我们证明编码 ROP 鸟嘌呤核苷酸交换因子的 GhROPGEF5 是控制 qFSA10.1 纤维长度和强度的基因。进化分析表明,GhROPGEF5 第三外显子的碱基缺失会导致纤维长度和强度的提高,这是一种罕见的突变,在极小比例的陆地棉中发生,纤维产量的降低阻碍了它的传播。GhROPGEF5 与 GhROP10 相互作用并激活 GhROP10。基因敲除或突变 GhROPGEF5 会导致激活 GhROP10 的能力丧失。敲除 GhROPGEF5 或 GhROP10 会影响许多与纤维伸长和次生壁沉积相关的下游基因的表达,延长纤维伸长时间,延迟次生壁沉积,产生更致密的纤维螺旋,增加纤维长度和强度。这些结果揭示了纤维发育的新的分子方面,并揭示了在棉花育种中提高纤维质量的稀有有利等位基因。
{"title":"Natural variation in GhROPGEF5 contributes to longer and stronger cotton fibers.","authors":"Wenwen Wang, Dexin Liu, Tingfu Zhang, Kai Guo, Xueying Liu, Dajun Liu, Lei Chen, Jinming Yang, Zhonghua Teng, Ying Zou, Junrui Ma, Yi Wang, Xinrui Yang, Xin Guo, Xiaoting Sun, Jian Zhang, Yuehua Xiao, Andrew H Paterson, Zhengsheng Zhang","doi":"10.1111/nph.20286","DOIUrl":"10.1111/nph.20286","url":null,"abstract":"<p><p>Length and strength are key parameters impacting the quality of textiles that can be produced from cotton fibers, and therefore are important considerations in cotton breeding. Through map-based cloning and function analysis, we demonstrated that GhROPGEF5, encoding a ROP guanine nucleotide exchange factor, was the gene controlling fiber length and strength at qFS<sub>A10.1</sub>. Evolutionary analysis revealed that a base deletion in the third exon of GhROPGEF5 resulting in superior fiber length and strength was a rare mutation occurring in a tiny percentage of Upland cottons, with reduced fiber yield hindering its spread. GhROPGEF5 interacted with and activated GhROP10. Knockout or mutation of GhROPGEF5 resulted a loss of the ability to activate GhROP10. Knockout of GhROPGEF5 or GhROP10 affected the expression of many downstream genes associated with fiber elongation and secondary wall deposition, prolonged fiber elongation and delayed secondary wall deposition, producing denser fiber helices and increasing fiber length and strength. These results revealed new molecular aspects of fiber development and revealed a rare favorable allele for improving fiber quality in cotton breeding.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"1090-1105"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strigolactones positively regulate HY5-dependent autophagy and the degradation of ubiquitinated proteins in response to cold stress in tomato. 在番茄应对冷胁迫的过程中,三苯甲内酯能正向调节依赖于 HY5 的自噬和泛素化蛋白质的降解。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2025-02-01 Epub Date: 2024-08-19 DOI: 10.1111/nph.20058
Cheng Chi, Xinlin Chen, Changan Zhu, Jiajian Cao, Hui Li, Ying Fu, Guochen Qin, Jun Zhao, Jingquan Yu, Jie Zhou

Autophagy, involved in protein degradation and amino acid recycling, plays a key role in plant development and stress responses. However, the relationship between autophagy and phytohormones remains unclear. We used diverse methods, including CRISPR/Cas9, ultra-performance liquid chromatography coupled with tandem mass spectrometry, chromatin immunoprecipitation, electrophoretic mobility shift assays, and dual-luciferase assays to explore the molecular mechanism of strigolactones in regulating autophagy and the degradation of ubiquitinated proteins under cold stress in tomato (Solanum lycopersicum). We show that cold stress induced the accumulation of ubiquitinated proteins. Mutants deficient in strigolactone biosynthesis were more sensitive to cold stress with increased accumulation of ubiquitinated proteins. Conversely, treatment with the synthetic strigolactone analog GR245DS enhanced cold tolerance in tomato, with elevated levels of accumulation of autophagosomes and transcripts of autophagy-related genes (ATGs), and reduced accumulation of ubiquitinated proteins. Meanwhile, cold stress induced the accumulation of ELONGATED HYPOCOTYL 5 (HY5), which was triggered by strigolactones. HY5 further trans-activated ATG18a transcription, resulting in autophagy formation. Mutation of ATG18a compromised strigolactone-induced cold tolerance, leading to decreased formation of autophagosomes and increased accumulation of ubiquitinated proteins. These findings reveal that strigolactones positively regulate autophagy in an HY5-dependent manner and facilitate the degradation of ubiquitinated proteins under cold conditions in tomato.

自噬参与蛋白质降解和氨基酸循环,在植物生长发育和胁迫反应中发挥着关键作用。然而,自噬与植物激素之间的关系仍不清楚。我们采用 CRISPR/Cas9、超高效液相色谱-串联质谱、染色质免疫沉淀、电泳迁移检测和双荧光素酶检测等多种方法,探讨了芪内酯在番茄(Solanum lycopersicum)冷胁迫下调控自噬和泛素化蛋白降解的分子机制。我们发现,冷胁迫会诱导泛素化蛋白质的积累。缺乏绞股蓝内酯生物合成的突变体对冷胁迫更加敏感,泛素化蛋白质的积累增加。相反,用合成的芪内酯类似物 GR245DS 处理番茄会增强其耐寒性,提高自噬体和自噬相关基因(ATGs)转录本的积累水平,减少泛素化蛋白质的积累。与此同时,冷胁迫诱导了延长的自噬基因 5(HY5)的积累,这是由绞股蓝内酯引发的。HY5进一步反式激活了ATG18a的转录,导致自噬的形成。ATG18a的突变会影响绞股蓝内酯诱导的耐寒性,导致自噬体的形成减少和泛素化蛋白质的积累增加。这些研究结果表明,在番茄的寒冷条件下,绞股蓝内酯以一种依赖于 HY5 的方式积极调节自噬,并促进泛素化蛋白质的降解。
{"title":"Strigolactones positively regulate HY5-dependent autophagy and the degradation of ubiquitinated proteins in response to cold stress in tomato.","authors":"Cheng Chi, Xinlin Chen, Changan Zhu, Jiajian Cao, Hui Li, Ying Fu, Guochen Qin, Jun Zhao, Jingquan Yu, Jie Zhou","doi":"10.1111/nph.20058","DOIUrl":"10.1111/nph.20058","url":null,"abstract":"<p><p>Autophagy, involved in protein degradation and amino acid recycling, plays a key role in plant development and stress responses. However, the relationship between autophagy and phytohormones remains unclear. We used diverse methods, including CRISPR/Cas9, ultra-performance liquid chromatography coupled with tandem mass spectrometry, chromatin immunoprecipitation, electrophoretic mobility shift assays, and dual-luciferase assays to explore the molecular mechanism of strigolactones in regulating autophagy and the degradation of ubiquitinated proteins under cold stress in tomato (Solanum lycopersicum). We show that cold stress induced the accumulation of ubiquitinated proteins. Mutants deficient in strigolactone biosynthesis were more sensitive to cold stress with increased accumulation of ubiquitinated proteins. Conversely, treatment with the synthetic strigolactone analog GR24<sup>5DS</sup> enhanced cold tolerance in tomato, with elevated levels of accumulation of autophagosomes and transcripts of autophagy-related genes (ATGs), and reduced accumulation of ubiquitinated proteins. Meanwhile, cold stress induced the accumulation of ELONGATED HYPOCOTYL 5 (HY5), which was triggered by strigolactones. HY5 further trans-activated ATG18a transcription, resulting in autophagy formation. Mutation of ATG18a compromised strigolactone-induced cold tolerance, leading to decreased formation of autophagosomes and increased accumulation of ubiquitinated proteins. These findings reveal that strigolactones positively regulate autophagy in an HY5-dependent manner and facilitate the degradation of ubiquitinated proteins under cold conditions in tomato.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"1106-1123"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xizang meadow degradation alters resource exchange ratio, network complexity, and biomass allocation tradeoff of arbuscular mycorrhizal symbiosis.
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2025-02-01 Epub Date: 2024-11-29 DOI: 10.1111/nph.20304
Qiang Dong, Shijie Ren, Claire Elizabeth Willing, Catharine Allyssa Adams, Yaoming Li, Baoming Ji, Cheng Gao

The response of arbuscular mycorrhizal (AM) symbiosis to environmental fluctuations involves resource exchange between host plants and fungal partners, associations between different AM fungal taxa, and biomass allocation between AM fungal spore and hyphal structures; yet a systematic understanding of these responses to meadow degradation remains relatively unknown, particularly in Xizang alpine meadow. Here, we approached this knowledge gap by labeling dual isotopes of air 13CO2 and soil 15NH4Cl, computing ecological networks of AM fungal communities, and quantifying AM fungal biomass allocation among spores, intra- and extraradical hyphae. We found that the exchange ratio of photosynthate and nitrogen between plants and AM fungi increased with the increasing severity of meadow degradation, indicating greater dependence of host plants on this symbiosis for resource acquisition. Additionally, using 18S rRNA gene metabarcoding, we found that AM fungal co-occurrence networks were more complex in more degraded meadows, supporting the stress gradient hypothesis. Meadow degradation also increased AM fungal biomass allocation toward traits associated with intra- and extraradical hyphae at the expense of spores. Our findings suggest that an integrated consideration of resource exchange, ecological networks, and biomass allocation may be important for the restoration of degraded ecosystems.

{"title":"Xizang meadow degradation alters resource exchange ratio, network complexity, and biomass allocation tradeoff of arbuscular mycorrhizal symbiosis.","authors":"Qiang Dong, Shijie Ren, Claire Elizabeth Willing, Catharine Allyssa Adams, Yaoming Li, Baoming Ji, Cheng Gao","doi":"10.1111/nph.20304","DOIUrl":"10.1111/nph.20304","url":null,"abstract":"<p><p>The response of arbuscular mycorrhizal (AM) symbiosis to environmental fluctuations involves resource exchange between host plants and fungal partners, associations between different AM fungal taxa, and biomass allocation between AM fungal spore and hyphal structures; yet a systematic understanding of these responses to meadow degradation remains relatively unknown, particularly in Xizang alpine meadow. Here, we approached this knowledge gap by labeling dual isotopes of air <sup>13</sup>CO<sub>2</sub> and soil <sup>15</sup>NH<sub>4</sub>Cl, computing ecological networks of AM fungal communities, and quantifying AM fungal biomass allocation among spores, intra- and extraradical hyphae. We found that the exchange ratio of photosynthate and nitrogen between plants and AM fungi increased with the increasing severity of meadow degradation, indicating greater dependence of host plants on this symbiosis for resource acquisition. Additionally, using 18S rRNA gene metabarcoding, we found that AM fungal co-occurrence networks were more complex in more degraded meadows, supporting the stress gradient hypothesis. Meadow degradation also increased AM fungal biomass allocation toward traits associated with intra- and extraradical hyphae at the expense of spores. Our findings suggest that an integrated consideration of resource exchange, ecological networks, and biomass allocation may be important for the restoration of degraded ecosystems.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"1288-1301"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A defensive pathway from NAC and TCP transcription factors activates a BAHD acyltransferase for (Z)-3-hexenyl acetate biosynthesis to resist herbivore in tea plant (Camellia sinensis). 来自 NAC 和 TCP 转录因子的防御途径可激活 BAHD 乙酰转移酶,促进 (Z)-3- 己烯基乙酸酯的生物合成,从而抵御茶树(Camellia sinensis)中的草食动物。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2025-02-01 Epub Date: 2024-11-17 DOI: 10.1111/nph.20283
Honglian Gu, Jiaxing Li, Dahe Qiao, Mei Li, Yingjie Yao, Hui Xie, Ke-Lin Huang, Shengrui Liu, De-Yu Xie, Chaoling Wei, Junyan Zhu

Numerous herbivore-induced plant volatiles (HIPVs) play important roles in plant defense. In tea plants (Camellia sinensis), (Z)-3-hexenyl acetate (3-HAC) has been characterized as associated with resistance to herbivores. To date, how tea plants biosynthesize and regulate 3-HAC to resist herbivores remain unclear. Based on transcriptomes assembled from Ectropis obliqua-fed leaves, a cDNA encoding BAHD acyltransferase, namely CsCHAT1, was highly induced in leaves fed with E. obliqua. Enzymatic assays showed that CsCHAT1 converted (Z)-3-hexenol into 3-HAC. Further suppression of CsCHAT1 expression reduced the accumulation of 3-HAC and lowered the resistance of tea plants to E. obliqua, while 3-HAC replenishment rescued the reduced resistance of CsCHAT1-silenced tea plants against E. obliqua. Two transcription factors (TFs), CsNAC30 and CsTCP11, were co-expressed with CsCHAT1. An integrative approach of biochemistry, DNA-protein interaction, gene silencing, and metabolic profiling revealed that the two TFs positively regulated the expression of CsCHAT1. The suppression of either one decreased the production of 3-HAC and eliminated the resistance of tea plants to E. obliqua. Notably, the suppression of either one considerably impaired JA-induced 3-HAC biosynthesis in tea plant. The proposed pathway can be targeted for innovative agro-biotechnologies protecting tea plants from damage by E. obliqua.

许多食草动物诱导的植物挥发物(HIPVs)在植物防御中发挥着重要作用。在茶树(Camellia sinensis)中,(Z)-3-己烯基乙酸酯(3-HAC)被认为与抵抗食草动物有关。迄今为止,茶树如何生物合成和调节 3-HAC 以抵御食草动物仍不清楚。根据从Ectropis obliqua喂食的叶片中收集的转录组,编码BAHD酰基转移酶(即CsCHAT1)的cDNA在Ectropis obliqua喂食的叶片中被高度诱导。酶测定显示,CsCHAT1 能将(Z)-3-己烯醇转化为 3-HAC。进一步抑制 CsCHAT1 的表达可减少 3-HAC 的积累,并降低茶树对 E. obliqua 的抗性,而 3-HAC 的补充则可挽救被 CsCHAT1 沉默的茶树对 E. obliqua 抗性的降低。两个转录因子(TFs)CsNAC30 和 CsTCP11 与 CsCHAT1 共同表达。生物化学、DNA 蛋白相互作用、基因沉默和代谢分析等综合方法显示,这两个转录因子对 CsCHAT1 的表达有正向调节作用。抑制其中任何一个都会减少 3-HAC 的产生,并消除茶树对 E. obliqua 的抗性。值得注意的是,抑制其中任何一种都会大大削弱 JA 诱导的茶树 3-HAC 生物合成。所提出的途径可作为创新农业生物技术的目标,保护茶树免受欧鼠李的损害。
{"title":"A defensive pathway from NAC and TCP transcription factors activates a BAHD acyltransferase for (Z)-3-hexenyl acetate biosynthesis to resist herbivore in tea plant (Camellia sinensis).","authors":"Honglian Gu, Jiaxing Li, Dahe Qiao, Mei Li, Yingjie Yao, Hui Xie, Ke-Lin Huang, Shengrui Liu, De-Yu Xie, Chaoling Wei, Junyan Zhu","doi":"10.1111/nph.20283","DOIUrl":"10.1111/nph.20283","url":null,"abstract":"<p><p>Numerous herbivore-induced plant volatiles (HIPVs) play important roles in plant defense. In tea plants (Camellia sinensis), (Z)-3-hexenyl acetate (3-HAC) has been characterized as associated with resistance to herbivores. To date, how tea plants biosynthesize and regulate 3-HAC to resist herbivores remain unclear. Based on transcriptomes assembled from Ectropis obliqua-fed leaves, a cDNA encoding BAHD acyltransferase, namely CsCHAT1, was highly induced in leaves fed with E. obliqua. Enzymatic assays showed that CsCHAT1 converted (Z)-3-hexenol into 3-HAC. Further suppression of CsCHAT1 expression reduced the accumulation of 3-HAC and lowered the resistance of tea plants to E. obliqua, while 3-HAC replenishment rescued the reduced resistance of CsCHAT1-silenced tea plants against E. obliqua. Two transcription factors (TFs), CsNAC30 and CsTCP11, were co-expressed with CsCHAT1. An integrative approach of biochemistry, DNA-protein interaction, gene silencing, and metabolic profiling revealed that the two TFs positively regulated the expression of CsCHAT1. The suppression of either one decreased the production of 3-HAC and eliminated the resistance of tea plants to E. obliqua. Notably, the suppression of either one considerably impaired JA-induced 3-HAC biosynthesis in tea plant. The proposed pathway can be targeted for innovative agro-biotechnologies protecting tea plants from damage by E. obliqua.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"1232-1248"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1