{"title":"Tibial acceleration alone is not a valid surrogate measure of tibial load in response to stride length manipulation.","authors":"Jean Tu, Olivia L Bruce, W Brent Edwards","doi":"10.1016/j.jshs.2024.100978","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to evaluate the relationship between peak tibial acceleration and peak ankle joint contact forces in response to stride length manipulation during level-ground running.</p><p><strong>Methods: </strong>Twenty-seven physically active participants ran 10 trials at preferred speed in each of 5 stride length conditions: preferred, ±5 %, and ±10 % of preferred stride length. Motion capture, force platform, and tibial acceleration data were directly measured, and ankle joint contact forces were estimated using an inverse-dynamics-based static optimization routine.</p><p><strong>Results: </strong>In general, peak axial tibial accelerations (p < 0.001) as well as axial (p < 0.001) and resultant (p < 0.001) ankle joint contact forces increased with stride length. When averaged within the 10 strides of each stride condition, moderate positive correlations were observed between peak axial acceleration and joint contact force (r = 0.49) as well as peak resultant acceleration and joint contact force (r = 0.51). However, 37% of participants illustrated either no relationship or negative correlations. Only weak correlations across participants existed between peak axial acceleration and joint contact force (r = 0.12) as well as peak resultant acceleration and ankle joint contact force (r = 0.18) when examined on a step-by-step basis.</p><p><strong>Conclusion: </strong>These results suggest that tibial acceleration should not be used as a surrogate for ankle joint contact force on a step-by-step basis in response to stride length manipulations during level-ground running. A 10-step averaged tibial acceleration metric may be useful for some runners, but an initial laboratory assessment would be required to identify these individuals.</p>","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"100978"},"PeriodicalIF":9.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sport and Health Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jshs.2024.100978","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to evaluate the relationship between peak tibial acceleration and peak ankle joint contact forces in response to stride length manipulation during level-ground running.
Methods: Twenty-seven physically active participants ran 10 trials at preferred speed in each of 5 stride length conditions: preferred, ±5 %, and ±10 % of preferred stride length. Motion capture, force platform, and tibial acceleration data were directly measured, and ankle joint contact forces were estimated using an inverse-dynamics-based static optimization routine.
Results: In general, peak axial tibial accelerations (p < 0.001) as well as axial (p < 0.001) and resultant (p < 0.001) ankle joint contact forces increased with stride length. When averaged within the 10 strides of each stride condition, moderate positive correlations were observed between peak axial acceleration and joint contact force (r = 0.49) as well as peak resultant acceleration and joint contact force (r = 0.51). However, 37% of participants illustrated either no relationship or negative correlations. Only weak correlations across participants existed between peak axial acceleration and joint contact force (r = 0.12) as well as peak resultant acceleration and ankle joint contact force (r = 0.18) when examined on a step-by-step basis.
Conclusion: These results suggest that tibial acceleration should not be used as a surrogate for ankle joint contact force on a step-by-step basis in response to stride length manipulations during level-ground running. A 10-step averaged tibial acceleration metric may be useful for some runners, but an initial laboratory assessment would be required to identify these individuals.
期刊介绍:
The Journal of Sport and Health Science (JSHS) is an international, multidisciplinary journal that aims to advance the fields of sport, exercise, physical activity, and health sciences. Published by Elsevier B.V. on behalf of Shanghai University of Sport, JSHS is dedicated to promoting original and impactful research, as well as topical reviews, editorials, opinions, and commentary papers.
With a focus on physical and mental health, injury and disease prevention, traditional Chinese exercise, and human performance, JSHS offers a platform for scholars and researchers to share their findings and contribute to the advancement of these fields. Our journal is peer-reviewed, ensuring that all published works meet the highest academic standards.
Supported by a carefully selected international editorial board, JSHS upholds impeccable integrity and provides an efficient publication platform. We invite submissions from scholars and researchers worldwide, and we are committed to disseminating insightful and influential research in the field of sport and health science.