首页 > 最新文献

Journal of Sport and Health Science最新文献

英文 中文
Association between physical activity and incident atherosclerotic cardiovascular disease is modified by predicted cardiovascular risk: The China-PAR project.
IF 9.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Pub Date : 2025-02-22 DOI: 10.1016/j.jshs.2025.101031
Tao Zhou, Chenxi Yuan, Chong Shen, Shufeng Chen, Jianxin Li, Keyong Huang, Xueli Yang, Xiaoqing Liu, Jie Cao, Ling Yu, Yingxin Zhao, Xianping Wu, Liancheng Zhao, Ying Li, Dongsheng Hu, Jianfeng Huang, Dongfeng Gu, Xiangfeng Lu, Fangchao Liu

Background: It remains unclear whether the cardiovascular benefits of physical activity (PA) vary across populations with different predicted atherosclerotic cardiovascular disease (ASCVD) risks. This study aimed to determine the modification of predicted cardiovascular risk on the association between PA and ASCVD incidence.

Methods: A total of 94,734 participants without ASCVD in the Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) project were included, with a median follow-up of 6.0 years. PA volume (metabolic equivalent of task (MET)-h/day) and intensity (%, percentage of moderate-to-vigorous PA (MVPA)) were assessed by questionnaires. Based on the ASCVD 10-year and lifetime risk prediction scores, participants were classified into low-to-medium-risk and high-risk groups. Hazard ratios (HRs) and 95% confidence intervals (95%CIs) for ASCVD were calculated using Cox proportional hazards models.

Results: During 679,438 person-years of follow-up, 3470 ASCVD events occurred. Higher PA volume was associated with lower ASCVD incidence, which was more pronounced among high-predicted-risk individuals than their low-to-medium-risk counterparts, with HRs (95%CIs) of 0.58 (0.50-0.67) and 0.62 (0.53-0.71) for the highest vs. lowest quartiles of PA volume, respectively. Additionally, analyses for PA intensity showed similar results. Compared with inactive individuals, there was a 32% (95%CI: 25%-38%) and 23% (95%CI: 13%-32%) risk reduction in high- and low-to-medium-risk groups, respectively, when over half of the PA volume was from MVPA. Furthermore, the additive interactions between PA and predicted risk indicated a further risk reduction by increasing PA, especially MVPA, in high-risk individuals.

Conclusion: Engaging in more PA, especially MVPA, reduced the risk of ASCVD incidence, with greater benefits among high-risk individuals. These findings emphasize the imperative for personalized PA recommendations tailored to distinct risk populations-in particular, reinforcing PA guidance for high-risk individuals.

{"title":"Association between physical activity and incident atherosclerotic cardiovascular disease is modified by predicted cardiovascular risk: The China-PAR project.","authors":"Tao Zhou, Chenxi Yuan, Chong Shen, Shufeng Chen, Jianxin Li, Keyong Huang, Xueli Yang, Xiaoqing Liu, Jie Cao, Ling Yu, Yingxin Zhao, Xianping Wu, Liancheng Zhao, Ying Li, Dongsheng Hu, Jianfeng Huang, Dongfeng Gu, Xiangfeng Lu, Fangchao Liu","doi":"10.1016/j.jshs.2025.101031","DOIUrl":"https://doi.org/10.1016/j.jshs.2025.101031","url":null,"abstract":"<p><strong>Background: </strong>It remains unclear whether the cardiovascular benefits of physical activity (PA) vary across populations with different predicted atherosclerotic cardiovascular disease (ASCVD) risks. This study aimed to determine the modification of predicted cardiovascular risk on the association between PA and ASCVD incidence.</p><p><strong>Methods: </strong>A total of 94,734 participants without ASCVD in the Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) project were included, with a median follow-up of 6.0 years. PA volume (metabolic equivalent of task (MET)-h/day) and intensity (%, percentage of moderate-to-vigorous PA (MVPA)) were assessed by questionnaires. Based on the ASCVD 10-year and lifetime risk prediction scores, participants were classified into low-to-medium-risk and high-risk groups. Hazard ratios (HRs) and 95% confidence intervals (95%CIs) for ASCVD were calculated using Cox proportional hazards models.</p><p><strong>Results: </strong>During 679,438 person-years of follow-up, 3470 ASCVD events occurred. Higher PA volume was associated with lower ASCVD incidence, which was more pronounced among high-predicted-risk individuals than their low-to-medium-risk counterparts, with HRs (95%CIs) of 0.58 (0.50-0.67) and 0.62 (0.53-0.71) for the highest vs. lowest quartiles of PA volume, respectively. Additionally, analyses for PA intensity showed similar results. Compared with inactive individuals, there was a 32% (95%CI: 25%-38%) and 23% (95%CI: 13%-32%) risk reduction in high- and low-to-medium-risk groups, respectively, when over half of the PA volume was from MVPA. Furthermore, the additive interactions between PA and predicted risk indicated a further risk reduction by increasing PA, especially MVPA, in high-risk individuals.</p><p><strong>Conclusion: </strong>Engaging in more PA, especially MVPA, reduced the risk of ASCVD incidence, with greater benefits among high-risk individuals. These findings emphasize the imperative for personalized PA recommendations tailored to distinct risk populations-in particular, reinforcing PA guidance for high-risk individuals.</p>","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"101031"},"PeriodicalIF":9.7,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143494313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exerkines: Potential regulators of ferroptosis.
IF 9.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Pub Date : 2025-02-21 DOI: 10.1016/j.jshs.2025.101032
Min Jia, Fengxing Li, Tong Wu, Ning Chen

Ferroptosis is a programmed cell death, and its mechanism involves multiple metabolic pathways, such as iron and lipid metabolism, and redox homeostasis. Exerkines are important mediators that optimize cellular homeostasis and maintain physiological health during exercise stimulation. This article comprehensively examines the mechanisms and regulatory networks for governing ferroptosis and summarizes the impact of exercise and exerkines on ferroptosis under varying load intensities and disease contexts. Notably, despite its significant efficacy and minimal side effects, the therapeutic and prognostic potential of exercise in ferroptosis-related diseases remains largely unexplored. This article, by summarizing recent progresses in the regulation of exerkines-mediated ferroptosis, could further uncover the preventive or alleviative mechanisms of some diseases upon exercise interventions, which will be beneficial to design exercise interventional strategies for alleviating disease progression through the regulation of ferroptosis.

{"title":"Exerkines: Potential regulators of ferroptosis.","authors":"Min Jia, Fengxing Li, Tong Wu, Ning Chen","doi":"10.1016/j.jshs.2025.101032","DOIUrl":"https://doi.org/10.1016/j.jshs.2025.101032","url":null,"abstract":"<p><p>Ferroptosis is a programmed cell death, and its mechanism involves multiple metabolic pathways, such as iron and lipid metabolism, and redox homeostasis. Exerkines are important mediators that optimize cellular homeostasis and maintain physiological health during exercise stimulation. This article comprehensively examines the mechanisms and regulatory networks for governing ferroptosis and summarizes the impact of exercise and exerkines on ferroptosis under varying load intensities and disease contexts. Notably, despite its significant efficacy and minimal side effects, the therapeutic and prognostic potential of exercise in ferroptosis-related diseases remains largely unexplored. This article, by summarizing recent progresses in the regulation of exerkines-mediated ferroptosis, could further uncover the preventive or alleviative mechanisms of some diseases upon exercise interventions, which will be beneficial to design exercise interventional strategies for alleviating disease progression through the regulation of ferroptosis.</p>","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"101032"},"PeriodicalIF":9.7,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143484232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological adaptations and performance enhancement with combined blood flow restricted and interval training: A systematic review with meta-analysis.
IF 9.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Pub Date : 2025-02-20 DOI: 10.1016/j.jshs.2025.101030
Mingyue Yin, Shengji Deng, Jianfeng Deng, Kai Xu, George P Nassis, Olivier Girard, Yongming Li

Objectives: We aimed to determine: (a) the chronic effects of interval training (IT) combined with blood flow restriction (BFR) on physiological adaptations (aerobic/anaerobic capacity and muscle responses) and performance enhancement (endurance and sprints), and (b) the influence of participant characteristics and intervention protocols on these effects.

Methods: Searches were conducted in PubMed, Web of Science (Core Collection), Cochrane Library (Embase, ClinicalTrials.gov, and International Clinical Trials Registry Platform), and Chinese National Knowledge Infrastructure on April 2, with updates on October 17, 2024. Pooled effects for each outcome were summarized using Hedge's g (g) through meta-analysis-based random effects models, and subgroup and regression analyses were used to explore moderators.

Results: A total of 24 studies with 621 participants were included. IT combined with BFR (IT+BFR) significantly improved maximal oxygen uptake (VO2max) (g = 0.63, I2 = 63%), mean power during the Wingate 30-s test (g = 0.70, I2 = 47%), muscle strength (g = 0.88, I2 = 64%), muscle endurance (g = 0.43, I2 = 0%), time to fatigue (g = 1.26, I2 = 86%), and maximal aerobic speed (g = 0.74, I2 = 0%) compared to IT alone. Subgroup analysis indicated that participant characteristics including training status, IT intensity, and IT modes significantly moderated VO2max (subgroup differences: p < 0.05). Specifically, IT+BFR showed significantly superior improvements in VO2max compared to IT alone in trained individuals (g = 0.76) at supra-maximal intensity (g = 1.29) and moderate intensity (g = 1.08) as well as in walking (g = 1.64) and running (g = 0.63) modes. Meta-regression analysis showed cuff width (β = 0.14) was significantly associated with VO2max change, identifying 8.23 cm as the minimum threshold required for significant improvement. Subgroup analyses regarding muscle strength did not reveal any significant moderators.

Conclusion: IT+BFR enhances physiological adaptations and optimizes aspects of endurance performance, with moderators including training status, IT protocol (intensity, mode, and type), and cuff width. This intervention addresses various IT-related challenges and provides tailored protocols and benefits for diverse populations.

{"title":"Physiological adaptations and performance enhancement with combined blood flow restricted and interval training: A systematic review with meta-analysis.","authors":"Mingyue Yin, Shengji Deng, Jianfeng Deng, Kai Xu, George P Nassis, Olivier Girard, Yongming Li","doi":"10.1016/j.jshs.2025.101030","DOIUrl":"https://doi.org/10.1016/j.jshs.2025.101030","url":null,"abstract":"<p><strong>Objectives: </strong>We aimed to determine: (a) the chronic effects of interval training (IT) combined with blood flow restriction (BFR) on physiological adaptations (aerobic/anaerobic capacity and muscle responses) and performance enhancement (endurance and sprints), and (b) the influence of participant characteristics and intervention protocols on these effects.</p><p><strong>Methods: </strong>Searches were conducted in PubMed, Web of Science (Core Collection), Cochrane Library (Embase, ClinicalTrials.gov, and International Clinical Trials Registry Platform), and Chinese National Knowledge Infrastructure on April 2, with updates on October 17, 2024. Pooled effects for each outcome were summarized using Hedge's g (g) through meta-analysis-based random effects models, and subgroup and regression analyses were used to explore moderators.</p><p><strong>Results: </strong>A total of 24 studies with 621 participants were included. IT combined with BFR (IT+BFR) significantly improved maximal oxygen uptake (VO<sub>2max</sub>) (g = 0.63, I<sup>2</sup> = 63%), mean power during the Wingate 30-s test (g = 0.70, I<sup>2</sup> = 47%), muscle strength (g = 0.88, I<sup>2</sup> = 64%), muscle endurance (g = 0.43, I<sup>2</sup> = 0%), time to fatigue (g = 1.26, I<sup>2</sup> = 86%), and maximal aerobic speed (g = 0.74, I<sup>2</sup> = 0%) compared to IT alone. Subgroup analysis indicated that participant characteristics including training status, IT intensity, and IT modes significantly moderated VO<sub>2max</sub> (subgroup differences: p < 0.05). Specifically, IT+BFR showed significantly superior improvements in VO<sub>2max</sub> compared to IT alone in trained individuals (g = 0.76) at supra-maximal intensity (g = 1.29) and moderate intensity (g = 1.08) as well as in walking (g = 1.64) and running (g = 0.63) modes. Meta-regression analysis showed cuff width (β = 0.14) was significantly associated with VO<sub>2max</sub> change, identifying 8.23 cm as the minimum threshold required for significant improvement. Subgroup analyses regarding muscle strength did not reveal any significant moderators.</p><p><strong>Conclusion: </strong>IT+BFR enhances physiological adaptations and optimizes aspects of endurance performance, with moderators including training status, IT protocol (intensity, mode, and type), and cuff width. This intervention addresses various IT-related challenges and provides tailored protocols and benefits for diverse populations.</p>","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"101030"},"PeriodicalIF":9.7,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A primer on global molecular responses to exercise in skeletal muscle: Omics in focus.
IF 9.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Pub Date : 2025-02-15 DOI: 10.1016/j.jshs.2025.101029
Kevin A Murach, James R Bagley

Advances in skeletal muscle omics has expanded our understanding of exercise-induced adaptations at the molecular level. Over the past 2 decades, transcriptome studies in muscle have detailed acute and chronic responses to resistance, endurance, and concurrent exercise, focusing on variables such as training status, nutrition, age, sex, and metabolic health profile. Multi-omics approaches, such as the integration of transcriptomic and epigenetic data, along with emerging ribosomal RNA sequencing advancements, have further provided insights into how skeletal muscle adapts to exercise across the lifespan. Downstream of the transcriptome, proteomic and phosphoproteomic studies have identified novel regulators of exercise adaptations, while single-cell/nucleus and spatial sequencing technologies promise to evolve our understanding of cellular specialization and communication in and around skeletal muscle cells. This narrative review highlights (a) the historical foundations of exercise omics in skeletal muscle, (b) current research at 3 layers of the omics cascade (DNA, RNA, and protein), and (c) applications of single-cell omics and spatial sequencing technologies to study skeletal muscle adaptation to exercise. Further elaboration of muscle's global molecular footprint using multi-omics methods will help researchers and practitioners develop more effective and targeted approaches to improve skeletal muscle health as well as athletic performance.

{"title":"A primer on global molecular responses to exercise in skeletal muscle: Omics in focus.","authors":"Kevin A Murach, James R Bagley","doi":"10.1016/j.jshs.2025.101029","DOIUrl":"10.1016/j.jshs.2025.101029","url":null,"abstract":"<p><p>Advances in skeletal muscle omics has expanded our understanding of exercise-induced adaptations at the molecular level. Over the past 2 decades, transcriptome studies in muscle have detailed acute and chronic responses to resistance, endurance, and concurrent exercise, focusing on variables such as training status, nutrition, age, sex, and metabolic health profile. Multi-omics approaches, such as the integration of transcriptomic and epigenetic data, along with emerging ribosomal RNA sequencing advancements, have further provided insights into how skeletal muscle adapts to exercise across the lifespan. Downstream of the transcriptome, proteomic and phosphoproteomic studies have identified novel regulators of exercise adaptations, while single-cell/nucleus and spatial sequencing technologies promise to evolve our understanding of cellular specialization and communication in and around skeletal muscle cells. This narrative review highlights (a) the historical foundations of exercise omics in skeletal muscle, (b) current research at 3 layers of the omics cascade (DNA, RNA, and protein), and (c) applications of single-cell omics and spatial sequencing technologies to study skeletal muscle adaptation to exercise. Further elaboration of muscle's global molecular footprint using multi-omics methods will help researchers and practitioners develop more effective and targeted approaches to improve skeletal muscle health as well as athletic performance.</p>","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"101029"},"PeriodicalIF":9.7,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143442499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of muscle warm-up on voluntary and evoked force-time parameters: A systematic review and meta-analysis with meta-regression.
IF 9.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Pub Date : 2025-01-25 DOI: 10.1016/j.jshs.2025.101024
Cody J Wilson, João Pedro Nunes, Anthony J Blazevich

Background: While muscle contractility increases with muscle temperature, there is no consensus on the best warm-up protocol to use before resistance training or sports exercise due to the range of possible warm-up and testing combinations available. Therefore, the objective of the current study was to determine the effects of different warm-up types (active, exercise-based vs. passive) on muscle function tested using different activation methods (voluntary vs. evoked) and performance test criteria (maximum force vs. rate-dependent contractile properties), with consideration of warm-up task specificity (specific vs. non-specific), temperature measurement method (muscle vs. skin), baseline temperatures, and subject-specific variables (training status and sex).

Methods: A systematic search was conducted in PubMed/MEDLINE, Scopus, Web of Science, Cochrane, Embase, and ProQuest. Random-effects meta-analyses and meta-regressions were used to compute the effect sizes (ES) and 95 % confidence intervals (95 %CI) to examine the effects of warm-up type, activation method, performance criterion, subject characteristics, and study design on temperature-related performance enhancement.

Results: The search yielded 1272 articles, of which 33 met the inclusion criteria (n = 921). Increasing temperature positively affected both voluntary (3.7 % ± 1.8 %/°C, ES = 0.28 (95 %CI: 0.14, 0.41)) and evoked (3.2 % ± 1.5 %/°C, ES = 0.65 (95 %CI: 0.29, 1.00)) rate-dependent contractile properties (dynamic, fast-velocity force production, and rate of force development (RFD)) but not maximum force production (voluntary: -0.2 % ± 0.9 %/°C, ES = 0.08 (95 %CI: -0.05, 0.22); evoked: -0.1 % ± 0.8 %/°C, ES = -0.20 (95 %CI: -0.50, 0.10)). Active warm-up did not induce greater enhancements in rate-dependent contractile properties (p = 0.284), maximum force production (p = 0.723), or overall function (pooled, p = 0.093) than passive warm-up. Meta-regressions did not reveal a significant effect of study design, temperature measurement method, warm-up task specificity, training status, or sex on the effect of increasing temperature (p > 0.05).

Conclusion: Increasing muscle temperature significantly enhances rate-dependent contractile function (RFD and muscle power) but not maximum force in both evoked and voluntary contractions. In contrast to expectation, no effects of warm-up modality (active vs. passive) or temperature measurement method (muscle vs. skin) were detected, although insufficient data prevented robust sub-group analyses.

{"title":"The effect of muscle warm-up on voluntary and evoked force-time parameters: A systematic review and meta-analysis with meta-regression.","authors":"Cody J Wilson, João Pedro Nunes, Anthony J Blazevich","doi":"10.1016/j.jshs.2025.101024","DOIUrl":"10.1016/j.jshs.2025.101024","url":null,"abstract":"<p><strong>Background: </strong>While muscle contractility increases with muscle temperature, there is no consensus on the best warm-up protocol to use before resistance training or sports exercise due to the range of possible warm-up and testing combinations available. Therefore, the objective of the current study was to determine the effects of different warm-up types (active, exercise-based vs. passive) on muscle function tested using different activation methods (voluntary vs. evoked) and performance test criteria (maximum force vs. rate-dependent contractile properties), with consideration of warm-up task specificity (specific vs. non-specific), temperature measurement method (muscle vs. skin), baseline temperatures, and subject-specific variables (training status and sex).</p><p><strong>Methods: </strong>A systematic search was conducted in PubMed/MEDLINE, Scopus, Web of Science, Cochrane, Embase, and ProQuest. Random-effects meta-analyses and meta-regressions were used to compute the effect sizes (ES) and 95 % confidence intervals (95 %CI) to examine the effects of warm-up type, activation method, performance criterion, subject characteristics, and study design on temperature-related performance enhancement.</p><p><strong>Results: </strong>The search yielded 1272 articles, of which 33 met the inclusion criteria (n = 921). Increasing temperature positively affected both voluntary (3.7 % ± 1.8 %/°C, ES = 0.28 (95 %CI: 0.14, 0.41)) and evoked (3.2 % ± 1.5 %/°C, ES = 0.65 (95 %CI: 0.29, 1.00)) rate-dependent contractile properties (dynamic, fast-velocity force production, and rate of force development (RFD)) but not maximum force production (voluntary: -0.2 % ± 0.9 %/°C, ES = 0.08 (95 %CI: -0.05, 0.22); evoked: -0.1 % ± 0.8 %/°C, ES = -0.20 (95 %CI: -0.50, 0.10)). Active warm-up did not induce greater enhancements in rate-dependent contractile properties (p = 0.284), maximum force production (p = 0.723), or overall function (pooled, p = 0.093) than passive warm-up. Meta-regressions did not reveal a significant effect of study design, temperature measurement method, warm-up task specificity, training status, or sex on the effect of increasing temperature (p > 0.05).</p><p><strong>Conclusion: </strong>Increasing muscle temperature significantly enhances rate-dependent contractile function (RFD and muscle power) but not maximum force in both evoked and voluntary contractions. In contrast to expectation, no effects of warm-up modality (active vs. passive) or temperature measurement method (muscle vs. skin) were detected, although insufficient data prevented robust sub-group analyses.</p>","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"101024"},"PeriodicalIF":9.7,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143048388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to "Biomechanics associated with tibial stress fracture in runners: A systematic review and meta-analysis" [J Sport Health Sci 12 (2023) 333-342]. “与跑步者胫骨应力性骨折相关的生物力学:系统回顾和荟萃分析”[J]体育健康科学12(2023)333-342。
IF 9.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Pub Date : 2025-01-21 DOI: 10.1016/j.jshs.2024.101019
Clare E Milner, Eric Foch, Joseph M Gonzales, Drew Petersen
{"title":"Erratum to \"Biomechanics associated with tibial stress fracture in runners: A systematic review and meta-analysis\" [J Sport Health Sci 12 (2023) 333-342].","authors":"Clare E Milner, Eric Foch, Joseph M Gonzales, Drew Petersen","doi":"10.1016/j.jshs.2024.101019","DOIUrl":"10.1016/j.jshs.2024.101019","url":null,"abstract":"","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"101019"},"PeriodicalIF":9.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do compression garments enhance running performance? An updated systematic review and meta-analysis.
IF 9.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Pub Date : 2025-01-20 DOI: 10.1016/j.jshs.2025.101028
Wei Wang, Yana Wang, Yufeng Zhang, Dongyang Si, Xingyang Li, Qingsong Liang, Qianteng Li, Lingyan Huang, Shutao Wei, Yu Liu

Background: Despite the wide use of compression garments to enhance athletic running performance, evidence supporting improvements has not been conclusive. This updated systematic review and meta-analysis of randomized controlled trials (RCTs) compared the effects of compression garment wearing with those of non-compression garment wearing (controls) during running on improving running performance.

Methods: A comprehensive search was conducted in the electronic databases (Web of Science, EBSCOhost, PubMed, Embase, Scopus, and Cochrane) for RCTs comparing running performance between runners wearing compression garments and controls during running, from inception to September 2024. Independent reviewers screened studies, extracted data, appraised risk of bias (RoB 2) and certainty of evidence (Grading of Recommendations Assessments, Development and Evaluation, GRADE). Primary outcomes were race time and time to exhaustion. Secondary outcomes covered running speed and race pace, submaximal oxygen uptake, tissue oxygenation, and soft tissue vibration. Random-effects meta-analyses were conducted to generate pooled estimates, expressed in standardized mean difference (SMD). Subgroup differences of garment, race type, and contact surface were tested in moderator analyses.

Results: The search yielded 51 eligible studies comprising 899 participants, of which 33 studies were available for meta-analysis of primary outcomes. Runners wearing compression garments during running showed no significant improvement in race time (SMD = -0.07, 95 % CI: -0.22 to 0.09; p = 0.40) or time to exhaustion (SMD = 0.04, 95 % CI: -0.20 to 0.29; p = 0.72). Moderator analyses indicated no effects from garment type, race type, or surface. Secondary outcomes also showed no performance benefits, although compression garments significantly reduced soft tissue vibration (SMD = -0.43, 95 % CI: -0.70 to -0.15; p < 0.01). Certainty of evidence was rated low to very low.

Conclusion: Data synthesis of current RCTs offers no updated evidence favoring the support of wearing compression garments during running as a viable strategy for improving running and endurance performance among runners of varying performance levels and types of running races.

{"title":"Do compression garments enhance running performance? An updated systematic review and meta-analysis.","authors":"Wei Wang, Yana Wang, Yufeng Zhang, Dongyang Si, Xingyang Li, Qingsong Liang, Qianteng Li, Lingyan Huang, Shutao Wei, Yu Liu","doi":"10.1016/j.jshs.2025.101028","DOIUrl":"10.1016/j.jshs.2025.101028","url":null,"abstract":"<p><strong>Background: </strong>Despite the wide use of compression garments to enhance athletic running performance, evidence supporting improvements has not been conclusive. This updated systematic review and meta-analysis of randomized controlled trials (RCTs) compared the effects of compression garment wearing with those of non-compression garment wearing (controls) during running on improving running performance.</p><p><strong>Methods: </strong>A comprehensive search was conducted in the electronic databases (Web of Science, EBSCOhost, PubMed, Embase, Scopus, and Cochrane) for RCTs comparing running performance between runners wearing compression garments and controls during running, from inception to September 2024. Independent reviewers screened studies, extracted data, appraised risk of bias (RoB 2) and certainty of evidence (Grading of Recommendations Assessments, Development and Evaluation, GRADE). Primary outcomes were race time and time to exhaustion. Secondary outcomes covered running speed and race pace, submaximal oxygen uptake, tissue oxygenation, and soft tissue vibration. Random-effects meta-analyses were conducted to generate pooled estimates, expressed in standardized mean difference (SMD). Subgroup differences of garment, race type, and contact surface were tested in moderator analyses.</p><p><strong>Results: </strong>The search yielded 51 eligible studies comprising 899 participants, of which 33 studies were available for meta-analysis of primary outcomes. Runners wearing compression garments during running showed no significant improvement in race time (SMD = -0.07, 95 % CI: -0.22 to 0.09; p = 0.40) or time to exhaustion (SMD = 0.04, 95 % CI: -0.20 to 0.29; p = 0.72). Moderator analyses indicated no effects from garment type, race type, or surface. Secondary outcomes also showed no performance benefits, although compression garments significantly reduced soft tissue vibration (SMD = -0.43, 95 % CI: -0.70 to -0.15; p < 0.01). Certainty of evidence was rated low to very low.</p><p><strong>Conclusion: </strong>Data synthesis of current RCTs offers no updated evidence favoring the support of wearing compression garments during running as a viable strategy for improving running and endurance performance among runners of varying performance levels and types of running races.</p>","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"101028"},"PeriodicalIF":9.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercised gut microbiota improves vascular and metabolic abnormalities in sedentary diabetic mice through gut‒vascular connection. 锻炼后的肠道微生物群通过肠道-血管连接改善久坐糖尿病小鼠的血管和代谢异常。
IF 11.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Pub Date : 2025-01-17 DOI: 10.1016/j.jshs.2025.101026
Chak Kwong Cheng,Lianwei Ye,Yu Wang,Ya-Ling Wang,Yin Xia,Stephen Heung-Sang Wong,Sheng Chen,Yu Huang
BACKGROUNDExercise elicits cardiometabolic benefits, reducing the risks of cardiovascular diseases and type 2 diabetes. This study aimed to investigate the vascular and metabolic effects of gut microbiota from exercise-trained donors on sedentary mice with type 2 diabetes and the potential mechanism.METHODSLeptin receptor-deficient diabetic (db/db) and nondiabetic (db/m+) mice underwent running treadmill exercise for 8 weeks, during which fecal microbiota transplantation (FMT) was parallelly performed from exercise-trained to sedentary diabetic (db/db) mice. Endothelial function, glucose homeostasis, physical performance, and vascular signaling of recipient mice were assessed. Vascular and intestinal stresses, including inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, were investigated. RNA sequencing analysis on mouse aortic and intestinal tissues was performed. Gut microbiota profiles of recipient mice were evaluated by metagenomic sequencing.RESULTSChronic exercise improved vascular and metabolic abnormalities in donor mice. Likewise, FMT from exercised donors retarded body weight gain and slightly improved grip strength and rotarod performance in recipient mice. Exercise-associated FMT enhanced endothelial function in different arteries, suppressed vascular and intestinal stresses, and improved glucose homeostasis in recipient mice, with noted microRNA-181b upregulation in aortas and intestines. Altered gut microbiota profiles and gut-derived factors (e.g., short-chain fatty acids and glucagon-like peptide-1) as well as improved intestinal integrity shall contribute to the cardiometabolic benefits, implying a gut‒vascular connection.CONCLUSIONThis proof-of-concept study indicates that exercised microbiota confers cardiometabolic benefits on sedentary db/db mice, extending the beneficial mechanism of exercise through gut‒vascular communication. The findings open up new therapeutic opportunities for cardiometabolic diseases and shed light on the development of exercise mimetics by targeting the gut microbiota.
运动对心脏代谢有益,降低心血管疾病和2型糖尿病的风险。本研究旨在探讨来自运动训练供体的肠道微生物群对2型糖尿病久坐小鼠血管和代谢的影响及其潜在机制。方法对睡眠素受体缺陷型糖尿病(db/db)和非糖尿病(db/m+)小鼠进行8周的跑步运动,在此期间,从运动训练型糖尿病(db/db)小鼠到久坐型糖尿病(db/db)小鼠并行进行粪便微生物群移植(FMT)。评估受体小鼠的内皮功能、葡萄糖稳态、身体表现和血管信号。研究了血管和肠道应激,包括炎症、氧化应激和内质网应激。对小鼠主动脉和肠组织进行RNA测序分析。通过宏基因组测序评估受体小鼠的肠道微生物群谱。结果慢性运动可改善供体小鼠血管和代谢异常。同样,来自运动供体的FMT延缓了受体小鼠的体重增加,并略微改善了握力和旋转棒的表现。运动相关的FMT增强了受体小鼠不同动脉的内皮功能,抑制了血管和肠道应激,改善了葡萄糖稳态,并在主动脉和肠道中显著上调了microRNA-181b。肠道菌群特征和肠道衍生因子(如短链脂肪酸和胰高血糖素样肽-1)的改变以及肠道完整性的改善有助于心脏代谢益处,这意味着肠道与血管的联系。结论:这项概念验证研究表明,运动后的微生物群对久坐的db/db小鼠具有心脏代谢益处,通过肠道-血管交流扩展了运动的有益机制。这一发现为心脏代谢疾病开辟了新的治疗机会,并通过针对肠道微生物群,揭示了运动模拟物的发展。
{"title":"Exercised gut microbiota improves vascular and metabolic abnormalities in sedentary diabetic mice through gut‒vascular connection.","authors":"Chak Kwong Cheng,Lianwei Ye,Yu Wang,Ya-Ling Wang,Yin Xia,Stephen Heung-Sang Wong,Sheng Chen,Yu Huang","doi":"10.1016/j.jshs.2025.101026","DOIUrl":"https://doi.org/10.1016/j.jshs.2025.101026","url":null,"abstract":"BACKGROUNDExercise elicits cardiometabolic benefits, reducing the risks of cardiovascular diseases and type 2 diabetes. This study aimed to investigate the vascular and metabolic effects of gut microbiota from exercise-trained donors on sedentary mice with type 2 diabetes and the potential mechanism.METHODSLeptin receptor-deficient diabetic (db/db) and nondiabetic (db/m+) mice underwent running treadmill exercise for 8 weeks, during which fecal microbiota transplantation (FMT) was parallelly performed from exercise-trained to sedentary diabetic (db/db) mice. Endothelial function, glucose homeostasis, physical performance, and vascular signaling of recipient mice were assessed. Vascular and intestinal stresses, including inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, were investigated. RNA sequencing analysis on mouse aortic and intestinal tissues was performed. Gut microbiota profiles of recipient mice were evaluated by metagenomic sequencing.RESULTSChronic exercise improved vascular and metabolic abnormalities in donor mice. Likewise, FMT from exercised donors retarded body weight gain and slightly improved grip strength and rotarod performance in recipient mice. Exercise-associated FMT enhanced endothelial function in different arteries, suppressed vascular and intestinal stresses, and improved glucose homeostasis in recipient mice, with noted microRNA-181b upregulation in aortas and intestines. Altered gut microbiota profiles and gut-derived factors (e.g., short-chain fatty acids and glucagon-like peptide-1) as well as improved intestinal integrity shall contribute to the cardiometabolic benefits, implying a gut‒vascular connection.CONCLUSIONThis proof-of-concept study indicates that exercised microbiota confers cardiometabolic benefits on sedentary db/db mice, extending the beneficial mechanism of exercise through gut‒vascular communication. The findings open up new therapeutic opportunities for cardiometabolic diseases and shed light on the development of exercise mimetics by targeting the gut microbiota.","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":"32 1","pages":"101026"},"PeriodicalIF":11.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ExerGeneDB: A physical exercise-regulated differential gene expression database. exgenedb:一个运动调节差异基因表达数据库。
IF 11.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Pub Date : 2025-01-17 DOI: 10.1016/j.jshs.2025.101027
Ling Pan,Songwei Ai,Xiaohui Shi,Xiaolan Tong,Michail Spanos,Guoping Li,Dragos Cretoiu,Juan Gao,Qiulian Zhou,Junjie Xiao
BACKGROUNDExercise induces molecular changes that involve multiple organs and tissues. Moreover, these changes are modulated by various exercise parameters-such as intensity, frequency, mode, and duration-as well as by clinical features like gender, age, and body mass index (BMI), each eliciting distinct biological effects. To assist exercise researchers in understanding these changes from a comprehensive perspective that includes multiple organs, diverse exercise regimens, and a range of clinical features, we developed Exercise Regulated Genes Database (ExerGeneDB), a database of exercise-regulated differential genes.METHODSExerGeneDB aggregated publicly available exercise-related sequencing datasets and subjected them to uniform quality control and preprocessing. The data, encompassing a variety of types, were organized into a specialized database of exercise-regulated genes. Notably, ExerGeneDB conducted differential analyses on this collected data, leveraging curated clinical information and accounting for important factors such as gender, age, and BMI.RESULTSExerGeneDB has assembled 1692 samples from rats and mice as well as 4492 human samples. It contains data from various tissues and organs, such as skeletal muscle, blood, adipose tissue, intestine, heart, liver, spleen, lungs, kidneys, brain, spinal cord, bone marrow, and bones. ExerGeneDB features bulk Ribonucleic acid sequencing (RNA-seq) (including non-coding RNA (ncRNA) and protein-coding RNA), microarray (including ncRNA and protein-coding RNA), and single cell RNA-seq data.CONCLUSIONExerGeneDB compiles and re-analyzes exercise-related data with a focus on clinical information. This has culminated in the creation of an interactive database for exercise regulation genes. The website for ExerGeneDB can be found at: https://exergenedb.com.
运动诱导涉及多个器官和组织的分子变化。此外,这些变化受到各种运动参数(如强度、频率、模式和持续时间)以及临床特征(如性别、年龄和体重指数(BMI))的调节,每一种都引起不同的生物学效应。为了帮助运动研究人员从包括多器官、不同运动方案和一系列临床特征在内的全面角度了解这些变化,我们开发了运动调节基因数据库(exgenedb),这是一个运动调节差异基因数据库。方法sexergenedb收集了公开可用的运动相关测序数据集,并对其进行统一的质量控制和预处理。这些包含多种类型的数据被组织到一个专门的运动调节基因数据库中。值得注意的是,exgenedb对收集到的数据进行了差异分析,利用了精心策划的临床信息,并考虑了性别、年龄和BMI等重要因素。结果sexergenedb已经组装了1692个大鼠和小鼠样本以及4492个人类样本。它包含来自各种组织和器官的数据,如骨骼肌、血液、脂肪组织、肠、心、肝、脾、肺、肾、脑、脊髓、骨髓和骨骼。exgenedb具有大量核糖核酸测序(RNA-seq)(包括非编码RNA (ncRNA)和蛋白质编码RNA),微阵列(包括ncRNA和蛋白质编码RNA)和单细胞RNA-seq数据。结论:exgenedb以临床信息为重点,对运动相关数据进行整理和重新分析。这项研究最终建立了一个运动调节基因的交互式数据库。exgenedb的网站是:https://exergenedb.com。
{"title":"ExerGeneDB: A physical exercise-regulated differential gene expression database.","authors":"Ling Pan,Songwei Ai,Xiaohui Shi,Xiaolan Tong,Michail Spanos,Guoping Li,Dragos Cretoiu,Juan Gao,Qiulian Zhou,Junjie Xiao","doi":"10.1016/j.jshs.2025.101027","DOIUrl":"https://doi.org/10.1016/j.jshs.2025.101027","url":null,"abstract":"BACKGROUNDExercise induces molecular changes that involve multiple organs and tissues. Moreover, these changes are modulated by various exercise parameters-such as intensity, frequency, mode, and duration-as well as by clinical features like gender, age, and body mass index (BMI), each eliciting distinct biological effects. To assist exercise researchers in understanding these changes from a comprehensive perspective that includes multiple organs, diverse exercise regimens, and a range of clinical features, we developed Exercise Regulated Genes Database (ExerGeneDB), a database of exercise-regulated differential genes.METHODSExerGeneDB aggregated publicly available exercise-related sequencing datasets and subjected them to uniform quality control and preprocessing. The data, encompassing a variety of types, were organized into a specialized database of exercise-regulated genes. Notably, ExerGeneDB conducted differential analyses on this collected data, leveraging curated clinical information and accounting for important factors such as gender, age, and BMI.RESULTSExerGeneDB has assembled 1692 samples from rats and mice as well as 4492 human samples. It contains data from various tissues and organs, such as skeletal muscle, blood, adipose tissue, intestine, heart, liver, spleen, lungs, kidneys, brain, spinal cord, bone marrow, and bones. ExerGeneDB features bulk Ribonucleic acid sequencing (RNA-seq) (including non-coding RNA (ncRNA) and protein-coding RNA), microarray (including ncRNA and protein-coding RNA), and single cell RNA-seq data.CONCLUSIONExerGeneDB compiles and re-analyzes exercise-related data with a focus on clinical information. This has culminated in the creation of an interactive database for exercise regulation genes. The website for ExerGeneDB can be found at: https://exergenedb.com.","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":"18 1","pages":"101027"},"PeriodicalIF":11.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetry in sprinting: The myth of perfection and the reality of performance. 短跑中的不对称:完美的神话和表现的现实。
IF 11.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Pub Date : 2025-01-17 DOI: 10.1016/j.jshs.2025.101025
Olivier Girard
{"title":"Asymmetry in sprinting: The myth of perfection and the reality of performance.","authors":"Olivier Girard","doi":"10.1016/j.jshs.2025.101025","DOIUrl":"https://doi.org/10.1016/j.jshs.2025.101025","url":null,"abstract":"","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":"74 1","pages":"101025"},"PeriodicalIF":11.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Sport and Health Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1