Establishing a Standard for Creating Angle-Corrected, Reformatted Brain CT Images.
IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGINGRadiologic TechnologyPub Date : 2024-09-01
Yuhao Wu, Momina Mateen, Matthew Stewart, Brent Burbridge
{"title":"Establishing a Standard for Creating Angle-Corrected, Reformatted Brain CT Images.","authors":"Yuhao Wu, Momina Mateen, Matthew Stewart, Brent Burbridge","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To establish a standardized method of reformatting axial images for computed tomography (CT) brain examinations.</p><p><strong>Methods: </strong>An anatomic line between the superior orbital rim and the base of the occipital bone (SOR-BS line) was chosen as the standardized reference line. In June 2022, CT technologists at a tertiary care center received an educational presentation and a 1-page reference handout on making standardized CT reformats. This was the quality-of-care intervention. Subsequently, 100 CT brain examinations performed on July 1 to 10, 2020 (preintervention) were analyzed and compared with 100 CT brain examinations performed on July 1 to 10, 2022 (postintervention).</p><p><strong>Results: </strong>There were no significant differences in the mean angle differences measured between the preintervention (6.2 ± 5.8°) and the postintervention (5.8 ± 4.7°) groups (<i>P</i> = .67). However, the number of CT brain studies with an angle difference of more than 20° decreased from 4 studies to 1 study. In addition, the number of CT brain studies without reformatted images decreased from 5 to 2 studies.</p><p><strong>Discussion: </strong>The cause for the less-than-optimal adoption of the expected change in CT workflow might be complex and multifactorial. However, the institution in this study is a busy tertiary care center with a chronic shortage of CT technologists. The busy workflow might have contributed to lack of significance for the parameters assessed.</p><p><strong>Conclusion: </strong>There was a slight but not significant improvement between preintervention and postintervention data.</p>","PeriodicalId":51772,"journal":{"name":"Radiologic Technology","volume":"96 1","pages":"13-18"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologic Technology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To establish a standardized method of reformatting axial images for computed tomography (CT) brain examinations.
Methods: An anatomic line between the superior orbital rim and the base of the occipital bone (SOR-BS line) was chosen as the standardized reference line. In June 2022, CT technologists at a tertiary care center received an educational presentation and a 1-page reference handout on making standardized CT reformats. This was the quality-of-care intervention. Subsequently, 100 CT brain examinations performed on July 1 to 10, 2020 (preintervention) were analyzed and compared with 100 CT brain examinations performed on July 1 to 10, 2022 (postintervention).
Results: There were no significant differences in the mean angle differences measured between the preintervention (6.2 ± 5.8°) and the postintervention (5.8 ± 4.7°) groups (P = .67). However, the number of CT brain studies with an angle difference of more than 20° decreased from 4 studies to 1 study. In addition, the number of CT brain studies without reformatted images decreased from 5 to 2 studies.
Discussion: The cause for the less-than-optimal adoption of the expected change in CT workflow might be complex and multifactorial. However, the institution in this study is a busy tertiary care center with a chronic shortage of CT technologists. The busy workflow might have contributed to lack of significance for the parameters assessed.
Conclusion: There was a slight but not significant improvement between preintervention and postintervention data.
Federico Trotta, George Jing Wang, Zhenyu Guo, Zhen Xu, Maria Crespo Ribadeneyra, Heather Au, Jacqueline Sophie Edge, Maria Magdalena Titirici, Laura Lander
期刊介绍:
Radiologic Technology is an official scholarly journal of the American Society of Radiologic Technologists. Published continuously since 1929, it circulates to more than 145,000 readers worldwide. This award-winning bimonthly Journal covers all disciplines and specialties within medical imaging, including radiography, mammography, computed tomography, magnetic resonance imaging, nuclear medicine imaging, sonography and cardiovascular-interventional radiography. In addition to peer-reviewed research articles, Radi