Changjiang Bao, Ziqi Guan, Zhenzhuang Li, Haoyu Wang, Yuanwen Feng, Qing Guo, Kun Zhang, Yanxu Wang, Liang Zuo, Bing Li
{"title":"Realizing overall trade-off of barocaloric performances in 1-bromoadamantane-graphene composites","authors":"Changjiang Bao, Ziqi Guan, Zhenzhuang Li, Haoyu Wang, Yuanwen Feng, Qing Guo, Kun Zhang, Yanxu Wang, Liang Zuo, Bing Li","doi":"10.1016/j.jmst.2024.08.019","DOIUrl":null,"url":null,"abstract":"<p>Baroclaoric materials have attracted extensive attention for their promising applications in low-carbon refrigeration technology. Given that the performances of barocaloric materials are intrinsically and even inversely correlated, an overall trade-off is necessitated. Here, we have prepared the 1-bromoadamantane-graphene composite (15 wt.% graphene), whose pressure-induced entropy change, pressure-induced adiabatic temperature change, and thermal hysteresis nearly remain unchanged. The pressure-induced adiabatic temperature change is comparable to the prototype neopentylglycol while the thermal hysteresis is much smaller. More importantly, by incorporating the additive the thermal conductivity has been elevated by 10 times. Such a combination renders the composite state-of-the-art barocaloric performances and is expected to benefit the design of barocaloric refrigeration technology.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.019","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Baroclaoric materials have attracted extensive attention for their promising applications in low-carbon refrigeration technology. Given that the performances of barocaloric materials are intrinsically and even inversely correlated, an overall trade-off is necessitated. Here, we have prepared the 1-bromoadamantane-graphene composite (15 wt.% graphene), whose pressure-induced entropy change, pressure-induced adiabatic temperature change, and thermal hysteresis nearly remain unchanged. The pressure-induced adiabatic temperature change is comparable to the prototype neopentylglycol while the thermal hysteresis is much smaller. More importantly, by incorporating the additive the thermal conductivity has been elevated by 10 times. Such a combination renders the composite state-of-the-art barocaloric performances and is expected to benefit the design of barocaloric refrigeration technology.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.