A novel atomic mobility model for alloys under pressure and its application in high pressure heat treatment Al-Si alloys by integrating CALPHAD and machine learning
Wang Yi, Sa Ma, Jianbao Gao, Jing Zhong, Tianchuang Gao, Shenglan Yang, Lijun Zhang, Qian Li
{"title":"A novel atomic mobility model for alloys under pressure and its application in high pressure heat treatment Al-Si alloys by integrating CALPHAD and machine learning","authors":"Wang Yi, Sa Ma, Jianbao Gao, Jing Zhong, Tianchuang Gao, Shenglan Yang, Lijun Zhang, Qian Li","doi":"10.1016/j.jmst.2024.08.017","DOIUrl":null,"url":null,"abstract":"<p>High pressure solution treatment, followed by ambient pressure aging treatment, may serve as a powerful tool for enhancing the alloy properties by tailoring plenty of nanoscale precipitates. However, no theoretical descriptions of the microstructure evolution and prediction of mechanical properties during high pressure heat treatment (HPHT) exist. In this work, a novel atomic mobility model for binary system under pressure was first developed in the framework of CALculation of PHAse Diagram (CALPHAD) approach and applied to assess the pressure-dependent atomic mobilities of (Al) phase in the Al-Si system. Then, quantitative simulation of particle dissolution and precipitation growth for HPHT Al-Si alloys was achieved through the CALPHAD tools by coupling the present pressure-dependent atomic mobilities together with previously established thermodynamic descriptions. Finally, the relationship among composition, process, microstructure, and properties was constructed by combining the CALPHAD and machine learning methods to predict the hardness values for HPHT Al-Si alloys over a wide range of compositions and processes with limited experimental data. This work contributes to realizing the quantitative simulation of microstructure evolution and accurate prediction of mechanical properties in HPHT alloys and illustrates pathways to accelerate the discovery of advanced alloys.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.017","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High pressure solution treatment, followed by ambient pressure aging treatment, may serve as a powerful tool for enhancing the alloy properties by tailoring plenty of nanoscale precipitates. However, no theoretical descriptions of the microstructure evolution and prediction of mechanical properties during high pressure heat treatment (HPHT) exist. In this work, a novel atomic mobility model for binary system under pressure was first developed in the framework of CALculation of PHAse Diagram (CALPHAD) approach and applied to assess the pressure-dependent atomic mobilities of (Al) phase in the Al-Si system. Then, quantitative simulation of particle dissolution and precipitation growth for HPHT Al-Si alloys was achieved through the CALPHAD tools by coupling the present pressure-dependent atomic mobilities together with previously established thermodynamic descriptions. Finally, the relationship among composition, process, microstructure, and properties was constructed by combining the CALPHAD and machine learning methods to predict the hardness values for HPHT Al-Si alloys over a wide range of compositions and processes with limited experimental data. This work contributes to realizing the quantitative simulation of microstructure evolution and accurate prediction of mechanical properties in HPHT alloys and illustrates pathways to accelerate the discovery of advanced alloys.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.