{"title":"Analysis of reverse osmosis and pervaporation using activity-based permeance: Aqueous and nonaqueous systems","authors":"Norihiro Moriyama, Shun-ichi Shiozaki, Hiroki Nagasawa, Masakoto Kanezashi, Toshinori Tsuru","doi":"10.1002/aic.18585","DOIUrl":null,"url":null,"abstract":"The recent advancement in mechanically and chemically robust membranes has led to the capabilities of both reverse osmosis (RO) and pervaporation (PV) for separation of water/organic solvent and organic solvent mixtures. However, their performances are evaluated in different permeation formulas. To address this, we have conducted an analysis using a unified parameter: activity-based permeance. The present study evaluated RO and PV using the same organosilica membrane for the separation of both non-aqueous solvents (methanol/ethanol, methanol/iso-propanol [IPA], and methanol/dimethyl carbonate) and organic solvent-aqueous mixtures (including water with methanol, ethanol, IPA, tert-butanol, and glucose), at concentrations ranging from 0% to 100%. With the use of activity-based permeance, we achieved a consistent evaluation of both PV and RO processes. Moreover, this approach provides prediction of separation performance even in RO and PV.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"138 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18585","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The recent advancement in mechanically and chemically robust membranes has led to the capabilities of both reverse osmosis (RO) and pervaporation (PV) for separation of water/organic solvent and organic solvent mixtures. However, their performances are evaluated in different permeation formulas. To address this, we have conducted an analysis using a unified parameter: activity-based permeance. The present study evaluated RO and PV using the same organosilica membrane for the separation of both non-aqueous solvents (methanol/ethanol, methanol/iso-propanol [IPA], and methanol/dimethyl carbonate) and organic solvent-aqueous mixtures (including water with methanol, ethanol, IPA, tert-butanol, and glucose), at concentrations ranging from 0% to 100%. With the use of activity-based permeance, we achieved a consistent evaluation of both PV and RO processes. Moreover, this approach provides prediction of separation performance even in RO and PV.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.