Toward an informative comparison of heterogeneous, synthetic, and biological electrocatalysis in energy conversion

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2024-09-06 DOI:10.1016/j.checat.2024.101098
Lars J.C. Jeuken, Dennis G.H. Hetterscheid, Marc T.M. Koper, Carla Casadevall, Christophe Léger, Antoni Llobet, Ross D. Milton, Ryuhei Nakamura, Kristina Tschulik
{"title":"Toward an informative comparison of heterogeneous, synthetic, and biological electrocatalysis in energy conversion","authors":"Lars J.C. Jeuken, Dennis G.H. Hetterscheid, Marc T.M. Koper, Carla Casadevall, Christophe Léger, Antoni Llobet, Ross D. Milton, Ryuhei Nakamura, Kristina Tschulik","doi":"10.1016/j.checat.2024.101098","DOIUrl":null,"url":null,"abstract":"<p>An urgently needed transition toward a sustainable and renewable energy landscape compels an increasing role for electrocatalysis. Distinct classes of electrocatalysts have each shown important benefits in energy conversion and the activation of small molecules such as CO<sub>2</sub>, H<sub>2</sub>O, O<sub>2</sub>, and H<sub>2</sub>: synthetic and biological molecular electrocatalysts and heterogeneous and reticular material electrocatalysts. This perspective seeks to foster knowledge exchange between the scientific communities by comparing these different electrocatalytic systems. The different subdisciplines employ divergent nomenclature, analytical approaches, and definitions of catalytic activity, even in cases of substantial overlap in chemical principles. We propose a set of conditions that must be met to ensure an unbiased comparison. Through sustained efforts to share best practices and harmonize approaches, we anticipate enhanced collaboration among subdisciplines, thereby facilitating innovative thinking and advancing the field of electrocatalysis toward its full potential in contributing to a sustainable and renewable energy future.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An urgently needed transition toward a sustainable and renewable energy landscape compels an increasing role for electrocatalysis. Distinct classes of electrocatalysts have each shown important benefits in energy conversion and the activation of small molecules such as CO2, H2O, O2, and H2: synthetic and biological molecular electrocatalysts and heterogeneous and reticular material electrocatalysts. This perspective seeks to foster knowledge exchange between the scientific communities by comparing these different electrocatalytic systems. The different subdisciplines employ divergent nomenclature, analytical approaches, and definitions of catalytic activity, even in cases of substantial overlap in chemical principles. We propose a set of conditions that must be met to ensure an unbiased comparison. Through sustained efforts to share best practices and harmonize approaches, we anticipate enhanced collaboration among subdisciplines, thereby facilitating innovative thinking and advancing the field of electrocatalysis toward its full potential in contributing to a sustainable and renewable energy future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对能源转换中的异质、合成和生物电催化进行信息比较
迫切需要向可持续和可再生能源转型,这就要求电催化技术发挥越来越大的作用。不同类别的电催化剂在能量转换和活化 CO2、H2O、O2 和 H2 等小分子方面都显示出重要优势:合成和生物分子电催化剂以及异质和网状材料电催化剂。这一视角旨在通过比较这些不同的电催化系统,促进科学界之间的知识交流。不同的分支学科采用不同的术语、分析方法和催化活性定义,即使在化学原理有实质性重叠的情况下也是如此。我们提出了一系列必须满足的条件,以确保进行无偏见的比较。通过持续努力分享最佳实践和协调方法,我们预计将加强各分支学科之间的合作,从而促进创新思维,推动电催化领域充分发挥潜力,为可持续和可再生能源的未来做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
Intermittent CO2 electrolysis needs its time in the sun Discovery of the threshold potential that triggers photochemical water oxidation with Ru(II) photosensitizers and MOx catalysts Singly and doubly oxidized carbenes and their applications in catalysis The role of metal nanostructure in ceria-supported catalysts for ammonia oxidation to nitrous oxide Engineering intricacies of implementing single-atom alloy catalysts for low-temperature electrocatalytic CO2 reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1