A. Bilgehan Baspinar, Tianzhe Zheng, Hyounghan Kwon, Andrei Faraon
{"title":"Nanoelectromechanically Tunable Dielectric Metasurfaces for Reconfigurable Wavefront Shaping","authors":"A. Bilgehan Baspinar, Tianzhe Zheng, Hyounghan Kwon, Andrei Faraon","doi":"10.1021/acsphotonics.4c00559","DOIUrl":null,"url":null,"abstract":"Active metasurfaces promise lightweight and compact reconfigurable optics. Among many other reconfigurable architectures, nanoelectromechanical effects are one of the most effective tuning methods. Various nanoelectromechanical implementations have been demonstrated, but they generally rely on suspended structures that lead to mechanical fragility. In this work, we propose and computationally investigate an on-substrate design with high aspect ratio doped silicon slabs that can achieve a near-2π phase response in reflection, utilizing a slot mode at telecom wavelength. An amplitude modulation of 80% and a phase modulation of 1.4π can be achieved within 10 V. By adjusting the voltage configuration, switchable beam steering can be achieved reaching up to 58% efficiency utilizing a back-mirror. Beam steering with up to 42% efficiency can be performed by eliminating the back mirror, with the added advantage of easier fabrication. This work paves the way for a solid-state nanoelectromechanical platform for amplitude and phase modulation, wavefront shaping, and beam steering.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c00559","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Active metasurfaces promise lightweight and compact reconfigurable optics. Among many other reconfigurable architectures, nanoelectromechanical effects are one of the most effective tuning methods. Various nanoelectromechanical implementations have been demonstrated, but they generally rely on suspended structures that lead to mechanical fragility. In this work, we propose and computationally investigate an on-substrate design with high aspect ratio doped silicon slabs that can achieve a near-2π phase response in reflection, utilizing a slot mode at telecom wavelength. An amplitude modulation of 80% and a phase modulation of 1.4π can be achieved within 10 V. By adjusting the voltage configuration, switchable beam steering can be achieved reaching up to 58% efficiency utilizing a back-mirror. Beam steering with up to 42% efficiency can be performed by eliminating the back mirror, with the added advantage of easier fabrication. This work paves the way for a solid-state nanoelectromechanical platform for amplitude and phase modulation, wavefront shaping, and beam steering.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.