The Human Accelerated Region HAR202 Controls NPAS3 Expression in the Developing Forebrain Displaying Differential Enhancer Activity Between Modern and Archaic Human Sequences.
Alfredo Leandro Caporale, Alejandro R Cinalli, Marcelo Rubinstein, Lucía F Franchini
{"title":"The Human Accelerated Region HAR202 Controls NPAS3 Expression in the Developing Forebrain Displaying Differential Enhancer Activity Between Modern and Archaic Human Sequences.","authors":"Alfredo Leandro Caporale, Alejandro R Cinalli, Marcelo Rubinstein, Lucía F Franchini","doi":"10.1093/molbev/msae186","DOIUrl":null,"url":null,"abstract":"<p><p>It has been proposed that the phenotypic differences in cognitive abilities between humans and our closest living relatives, chimpanzees, are largely due to changes in the regulation of neurodevelopmental genes. We have previously found that the neurodevelopmental transcription factor gene NPAS3 accumulates the largest number of human accelerated regions (HARs), suggesting it may play some role in the phenotypic evolution of the human nervous system. In this work, we performed a comparative functional analysis of NPAS3-HAR202 using enhancer reporter assays in transgenic zebrafish and mice. We found that the Homo sapiens HAR202 ortholog failed to drive reporter expression to the zebrafish nervous system, in high contrast to the strong expression displayed by the rest of the vertebrate ortholog sequences tested. Remarkably, the HAR202 ortholog from archaic humans (Neanderthals/Denisovans) also displayed a pan-vertebrate expression pattern, despite the fact that archaic and modern humans have only one nucleotide substitution. Moreover, similar results were found when comparing enhancer activity in transgenic mice, where we observed a loss of activity of the modern human version in the mouse developing brain. To investigate the functional importance of HAR202, we generated mice lacking HAR202 and found a remarkable decrease of Npas3 expression in the forebrain during development. Our results place HAR202 as one of the very few examples of a neurodevelopmental transcriptional enhancer displaying functional evolution in the brain as a result of a fast molecular evolutionary process that specifically occurred in the human lineage.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":null,"pages":null},"PeriodicalIF":11.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461159/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae186","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It has been proposed that the phenotypic differences in cognitive abilities between humans and our closest living relatives, chimpanzees, are largely due to changes in the regulation of neurodevelopmental genes. We have previously found that the neurodevelopmental transcription factor gene NPAS3 accumulates the largest number of human accelerated regions (HARs), suggesting it may play some role in the phenotypic evolution of the human nervous system. In this work, we performed a comparative functional analysis of NPAS3-HAR202 using enhancer reporter assays in transgenic zebrafish and mice. We found that the Homo sapiens HAR202 ortholog failed to drive reporter expression to the zebrafish nervous system, in high contrast to the strong expression displayed by the rest of the vertebrate ortholog sequences tested. Remarkably, the HAR202 ortholog from archaic humans (Neanderthals/Denisovans) also displayed a pan-vertebrate expression pattern, despite the fact that archaic and modern humans have only one nucleotide substitution. Moreover, similar results were found when comparing enhancer activity in transgenic mice, where we observed a loss of activity of the modern human version in the mouse developing brain. To investigate the functional importance of HAR202, we generated mice lacking HAR202 and found a remarkable decrease of Npas3 expression in the forebrain during development. Our results place HAR202 as one of the very few examples of a neurodevelopmental transcriptional enhancer displaying functional evolution in the brain as a result of a fast molecular evolutionary process that specifically occurred in the human lineage.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.