LXR-dependent enhancer activation regulates the temporal organization of the liver's response to refeeding leading to lipogenic gene overshoot.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2024-09-06 eCollection Date: 2024-09-01 DOI:10.1371/journal.pbio.3002735
Noga Korenfeld, Tali Gorbonos, Maria C Romero Florian, Dan Rotaro, Dana Goldberg, Talia Radushkevitz-Frishman, Meital Charni-Natan, Meirav Bar-Shimon, Carolyn L Cummins, Ido Goldstein
{"title":"LXR-dependent enhancer activation regulates the temporal organization of the liver's response to refeeding leading to lipogenic gene overshoot.","authors":"Noga Korenfeld, Tali Gorbonos, Maria C Romero Florian, Dan Rotaro, Dana Goldberg, Talia Radushkevitz-Frishman, Meital Charni-Natan, Meirav Bar-Shimon, Carolyn L Cummins, Ido Goldstein","doi":"10.1371/journal.pbio.3002735","DOIUrl":null,"url":null,"abstract":"<p><p>Transitions between the fed and fasted state are common in mammals. The liver orchestrates adaptive responses to feeding/fasting by transcriptionally regulating metabolic pathways of energy usage and storage. Transcriptional and enhancer dynamics following cessation of fasting (refeeding) have not been explored. We examined the transcriptional and chromatin events occurring upon refeeding in mice, including kinetic behavior and molecular drivers. We found that the refeeding response is temporally organized with the early response focused on ramping up protein translation while the later stages of refeeding drive a bifurcated lipid synthesis program. While both the cholesterol biosynthesis and lipogenesis pathways were inhibited during fasting, most cholesterol biosynthesis genes returned to their basal levels upon refeeding while most lipogenesis genes markedly overshoot above pre-fasting levels. Gene knockout, enhancer dynamics, and ChIP-seq analyses revealed that lipogenic gene overshoot is dictated by LXRα. These findings from unbiased analyses unravel the mechanism behind the long-known phenomenon of refeeding fat overshoot.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002735","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Transitions between the fed and fasted state are common in mammals. The liver orchestrates adaptive responses to feeding/fasting by transcriptionally regulating metabolic pathways of energy usage and storage. Transcriptional and enhancer dynamics following cessation of fasting (refeeding) have not been explored. We examined the transcriptional and chromatin events occurring upon refeeding in mice, including kinetic behavior and molecular drivers. We found that the refeeding response is temporally organized with the early response focused on ramping up protein translation while the later stages of refeeding drive a bifurcated lipid synthesis program. While both the cholesterol biosynthesis and lipogenesis pathways were inhibited during fasting, most cholesterol biosynthesis genes returned to their basal levels upon refeeding while most lipogenesis genes markedly overshoot above pre-fasting levels. Gene knockout, enhancer dynamics, and ChIP-seq analyses revealed that lipogenic gene overshoot is dictated by LXRα. These findings from unbiased analyses unravel the mechanism behind the long-known phenomenon of refeeding fat overshoot.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
依赖于 LXR 的增强子激活调节了肝脏对再进食反应的时间组织,导致致脂基因超调。
哺乳动物在进食和禁食状态之间的转换很常见。肝脏通过转录调节能量利用和储存的代谢途径,协调对进食/禁食的适应性反应。目前尚未对停止禁食(再进食)后的转录和增强子动态进行研究。我们研究了小鼠断食后发生的转录和染色质事件,包括动力学行为和分子驱动因素。我们发现,进食反应在时间上是有组织的,早期反应主要集中在加速蛋白质翻译上,而进食后期则驱动一个分叉的脂质合成程序。虽然胆固醇生物合成和脂肪生成途径在禁食期间都受到抑制,但大多数胆固醇生物合成基因在进食后恢复到基础水平,而大多数脂肪生成基因则明显超过禁食前水平。基因敲除、增强子动力学和 ChIP-seq 分析表明,脂肪生成基因的超调是由 LXRα 决定的。这些无偏见的分析结果揭示了长期以来众所周知的进食脂肪超调现象背后的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
LXR-dependent enhancer activation regulates the temporal organization of the liver's response to refeeding leading to lipogenic gene overshoot. Syllable processing is organized in discrete subregions of the human superior temporal gyrus. Centrosome amplification primes ovarian cancer cells for apoptosis and potentiates the response to chemotherapy. Keeping time: How musical training may boost cognition. A flexible loop in the paxillin LIM3 domain mediates its direct binding to integrin β subunits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1