Javane Rostampoor;Raviraj S. Adve;Ali Afana;Yahia A. Eldemerdash Ahmed
{"title":"Predictive Caching in Non-Stationary Environments: A Time Series Prediction and Survival Analysis Approach","authors":"Javane Rostampoor;Raviraj S. Adve;Ali Afana;Yahia A. Eldemerdash Ahmed","doi":"10.1109/OJCOMS.2024.3449241","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative predictive caching strategy tailored to a real-world dataset, specifically the Facebook video dataset. Making caching decisions for the dataset is challenging due to its dynamic nature, where users’ content requests vary over time without fitting into any known models. Traditional caching strategies, which often rely on a constant pool of files, do not suit this dataset as content is requested by users, and then its popularity fades over time; furthermore, the list of available content changes. We propose a two-stage predictive caching strategy. Initially, it forecasts the number of user requests using content features and historical request data, achieved through training a long short-term memory (LSTM) network. Then, we employ our proposed extended Cox proportional hazard (E-CPH) model to predict the survival probability of content. This facilitates proactive content caching. Caching new content is made possible by the timely eviction of content unlikely to be requested again. To incorporate the predicted content popularity and its life cycle into the caching decision, we introduce a partially observable Markov decision process (POMDP)-based caching strategy. Here, the survival probability of content contributes to the belief state of the associated content which leads to our believed predicted reward - a cache hit. The caching algorithm then stores the files based on their predicted believed reward taking into account both the popularity and survival probability predictions. Simulation results validate the efficacy of our proposed predictive caching method in enhancing the cache hit rate compared to conventional recurrent neural network (RNN)-based caching and policy-based caching approaches, such as least frequently used caching and its variants.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10644108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10644108/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an innovative predictive caching strategy tailored to a real-world dataset, specifically the Facebook video dataset. Making caching decisions for the dataset is challenging due to its dynamic nature, where users’ content requests vary over time without fitting into any known models. Traditional caching strategies, which often rely on a constant pool of files, do not suit this dataset as content is requested by users, and then its popularity fades over time; furthermore, the list of available content changes. We propose a two-stage predictive caching strategy. Initially, it forecasts the number of user requests using content features and historical request data, achieved through training a long short-term memory (LSTM) network. Then, we employ our proposed extended Cox proportional hazard (E-CPH) model to predict the survival probability of content. This facilitates proactive content caching. Caching new content is made possible by the timely eviction of content unlikely to be requested again. To incorporate the predicted content popularity and its life cycle into the caching decision, we introduce a partially observable Markov decision process (POMDP)-based caching strategy. Here, the survival probability of content contributes to the belief state of the associated content which leads to our believed predicted reward - a cache hit. The caching algorithm then stores the files based on their predicted believed reward taking into account both the popularity and survival probability predictions. Simulation results validate the efficacy of our proposed predictive caching method in enhancing the cache hit rate compared to conventional recurrent neural network (RNN)-based caching and policy-based caching approaches, such as least frequently used caching and its variants.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.