{"title":"On Line-of-Sight Stabilization of Fizeau Phased Array Telescope System With Delay Compensation-Based Disturbance Observer","authors":"Qiong Tu;Qiang Wang;Jian-Liang Shi;Kai-Yuan Yang;Wei Tang;Yang Li;Rong-Qi Ma;Yong-Mei Huang","doi":"10.1109/JPHOT.2024.3450208","DOIUrl":null,"url":null,"abstract":"In the satellite-borne Fizeau phased array telescope (FPAT), the imaging quality is significantly deteriorated by tip-tilt disturbances induced by carrier maneuvering. The long exposure time of the image sensor is usually required for a good signal-to-noise ratio, which brings the time delays into the control loop of the fast-steering mirror. As a result, a low control bandwidth is insufficient to compensate for FPAT disturbances. In this paper, a time delay compensation-based disturbance observer (TDC-DOB) is proposed to reject carrier disturbances. This new TDC-DOB is plugged into the original feedback control loop, so the disturbance rejection can be optimized by designing an appropriate delay compensation controller. An improved TDC-DOB controller is presented to reject the widespread carrier disturbances, and also reduce the amplifications induced by the waterbed effect. This proposed controller can achieve a satisfying disturbance rejection beyond the closed-loop bandwidth which breaks the limitation of the existing DOB method. Both simulations and extensive experiments are carried out to demonstrate that the TDC-DOB method can earn a significant improvement for the disturbance rejection in comparison with the conventional feedback controller.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-10"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648825","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10648825/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the satellite-borne Fizeau phased array telescope (FPAT), the imaging quality is significantly deteriorated by tip-tilt disturbances induced by carrier maneuvering. The long exposure time of the image sensor is usually required for a good signal-to-noise ratio, which brings the time delays into the control loop of the fast-steering mirror. As a result, a low control bandwidth is insufficient to compensate for FPAT disturbances. In this paper, a time delay compensation-based disturbance observer (TDC-DOB) is proposed to reject carrier disturbances. This new TDC-DOB is plugged into the original feedback control loop, so the disturbance rejection can be optimized by designing an appropriate delay compensation controller. An improved TDC-DOB controller is presented to reject the widespread carrier disturbances, and also reduce the amplifications induced by the waterbed effect. This proposed controller can achieve a satisfying disturbance rejection beyond the closed-loop bandwidth which breaks the limitation of the existing DOB method. Both simulations and extensive experiments are carried out to demonstrate that the TDC-DOB method can earn a significant improvement for the disturbance rejection in comparison with the conventional feedback controller.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.