{"title":"A comparative study of using geophysical methods for imaging subsurface voids of various sizes and at different depths","authors":"","doi":"10.1016/j.enggeo.2024.107711","DOIUrl":null,"url":null,"abstract":"<div><p>Subsurface voids pose significant geohazards, underscoring the need for their timely detection in order to mitigate the associated hazard. We report on a field study aimed at the comparative assessment of electrical resistivity tomography (ERT), seismic refraction tomography (SRT), and the multichannel analysis of surface waves (MASW) for void mapping in karstic regions. The field surveys were conducted at a site in central Texas, of typical karstic geomorphology, and involved the co-located deployment of ERT, SRT and MASW arrays. Post-surveying, boreholes were drilled at select locations for verification purposes. It is shown that MASW demonstrated limited ability to resolve voids due to its inherent theoretical limitations. In contrast, ERT revealed high-resistivity air-filled zones, and low-resistivity soil-filled regions, which aligned well with post-survey borehole logs, although deeper voids remained largely undetected. SRT clearly delineated voids through velocity reductions, but smoothing effects overestimated void velocities. Using ERT and SRT jointly provided improved void characterization compared to single-method-based interpretations, with ERT determining void type and SRT delineating boundaries. Despite the relative success of the joint ERT-SRT application, it is evident that without the corroboration provided by invasive testing, definitive void localization and characterization under arbitrary site conditions remains elusive.</p></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003119","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Subsurface voids pose significant geohazards, underscoring the need for their timely detection in order to mitigate the associated hazard. We report on a field study aimed at the comparative assessment of electrical resistivity tomography (ERT), seismic refraction tomography (SRT), and the multichannel analysis of surface waves (MASW) for void mapping in karstic regions. The field surveys were conducted at a site in central Texas, of typical karstic geomorphology, and involved the co-located deployment of ERT, SRT and MASW arrays. Post-surveying, boreholes were drilled at select locations for verification purposes. It is shown that MASW demonstrated limited ability to resolve voids due to its inherent theoretical limitations. In contrast, ERT revealed high-resistivity air-filled zones, and low-resistivity soil-filled regions, which aligned well with post-survey borehole logs, although deeper voids remained largely undetected. SRT clearly delineated voids through velocity reductions, but smoothing effects overestimated void velocities. Using ERT and SRT jointly provided improved void characterization compared to single-method-based interpretations, with ERT determining void type and SRT delineating boundaries. Despite the relative success of the joint ERT-SRT application, it is evident that without the corroboration provided by invasive testing, definitive void localization and characterization under arbitrary site conditions remains elusive.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.