Li Yin, Hong Tang, Tom Berlijn, Adrienn Ruzsinszky
{"title":"Efficient simulations of charge density waves in the transition metal Dichalcogenide TiSe2","authors":"Li Yin, Hong Tang, Tom Berlijn, Adrienn Ruzsinszky","doi":"10.1038/s41524-024-01396-2","DOIUrl":null,"url":null,"abstract":"<p>Charge density waves (CDWs) in transition metal dichalcogenides are the subject of growing scientific interest due to their rich interplay with exotic phases of matter and their potential technological applications. Here, using density functional theory with advanced meta-generalized gradient approximations (meta-GGAs) and linear response time-dependent density functional theory (TDDFT) with state-of-the-art exchange-correlation kernels, we investigate the electronic, vibrational, and optical properties in 1<i>T</i>-TiSe<sub>2</sub> with and without CDW. In both bulk and monolayer TiSe<sub>2</sub>, the electronic bands and phonon dispersions in either normal or CDW (semiconducting) phase are described well via meta-GGAs, which separate the valence and conduction bands just as HSE06 does but with significantly more computational feasibility. The experimentally observed humps of electron energy loss spectroscopy are successfully reproduced in TDDFT. Our work opens the door to simulating these complexities in CDW compounds from first principles by revealing meta-GGAs as an accurate low-cost alternative to HSE06.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01396-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Charge density waves (CDWs) in transition metal dichalcogenides are the subject of growing scientific interest due to their rich interplay with exotic phases of matter and their potential technological applications. Here, using density functional theory with advanced meta-generalized gradient approximations (meta-GGAs) and linear response time-dependent density functional theory (TDDFT) with state-of-the-art exchange-correlation kernels, we investigate the electronic, vibrational, and optical properties in 1T-TiSe2 with and without CDW. In both bulk and monolayer TiSe2, the electronic bands and phonon dispersions in either normal or CDW (semiconducting) phase are described well via meta-GGAs, which separate the valence and conduction bands just as HSE06 does but with significantly more computational feasibility. The experimentally observed humps of electron energy loss spectroscopy are successfully reproduced in TDDFT. Our work opens the door to simulating these complexities in CDW compounds from first principles by revealing meta-GGAs as an accurate low-cost alternative to HSE06.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.