Calcium single atoms stabilized by nitrogen coordination in metal–organic frameworks as efficient solid base catalysts

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-09-03 DOI:10.1016/j.jcis.2024.09.019
{"title":"Calcium single atoms stabilized by nitrogen coordination in metal–organic frameworks as efficient solid base catalysts","authors":"","doi":"10.1016/j.jcis.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><p>Considerable attention has been paid to the preparation of single-atom solid base catalysts (SASBCs) owing to their high activity and maximized utilization of basic sites. At present, the reported fabrication methods of SASBCs, such as two-step reduction strategy and sublimation capture strategy, require high temperature. Such a high activation temperature is easy to cause the sublimation loss of alkali or alkaline earth metal atoms and destructive to the support structure. Herein, a new SASBC, Ca<sub>1</sub>/UiO-67-BPY, is fabricated, in which the alkaline earth metal Ca sites are immobilized onto N-rich metal–organic framework UiO-67-BPY at room temperature. The results show that the atomic configuration of Ca single atoms is coordinated by two N atoms in the framework. The obtained Ca SASBC possesses ordered structure and exhibits high product yield of 87.2% in the Knoevenagel reaction between benzaldehyde and malononitrile. Furthermore, thanks to the Ca single atoms sites anchored on UiO-67-BPY, the Ca<sub>1</sub>/UiO-67-BPY catalyst also shows good stability during cycles. This work might offer new insight in designing SASBCs for different base-catalyzed reactions.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724020770","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Considerable attention has been paid to the preparation of single-atom solid base catalysts (SASBCs) owing to their high activity and maximized utilization of basic sites. At present, the reported fabrication methods of SASBCs, such as two-step reduction strategy and sublimation capture strategy, require high temperature. Such a high activation temperature is easy to cause the sublimation loss of alkali or alkaline earth metal atoms and destructive to the support structure. Herein, a new SASBC, Ca1/UiO-67-BPY, is fabricated, in which the alkaline earth metal Ca sites are immobilized onto N-rich metal–organic framework UiO-67-BPY at room temperature. The results show that the atomic configuration of Ca single atoms is coordinated by two N atoms in the framework. The obtained Ca SASBC possesses ordered structure and exhibits high product yield of 87.2% in the Knoevenagel reaction between benzaldehyde and malononitrile. Furthermore, thanks to the Ca single atoms sites anchored on UiO-67-BPY, the Ca1/UiO-67-BPY catalyst also shows good stability during cycles. This work might offer new insight in designing SASBCs for different base-catalyzed reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属有机框架中通过氮配位稳定的钙单原子作为高效固体碱催化剂。
由于单原子固体基催化剂(SASBC)具有高活性并能最大限度地利用碱性位点,因此其制备受到了广泛关注。目前,已报道的 SASBC 制备方法,如两步还原策略和升华捕获策略,都需要较高的温度。如此高的活化温度容易造成碱金属或碱土金属原子的升华损失,并对支撑结构造成破坏。本文制备了一种新型 SASBC--Ca1/UiO-67-BPY,在室温下将碱土金属 Ca 位点固定在富 N 金属有机框架 UiO-67-BPY 上。结果表明,Ca 单原子的原子构型在框架中由两个 N 原子配位。所获得的 Ca SASBC 具有有序结构,在苯甲醛和丙二腈的 Knoevenagel 反应中表现出 87.2% 的高产率。此外,由于 Ca 单原子位点锚定在 UiO-67-BPY 上,Ca1/UiO-67-BPY 催化剂在循环过程中也表现出良好的稳定性。这项工作可能会为设计用于不同碱催化反应的 SASBC 提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1