Rabia Tahir, Samra, Fozia Afzal, Hamid Khan, Abdul Ghaffar, Izhar Hyder Qazi, Fatimah Saleh Al-Khattaf, Zhao Liulan, Haoxiao Yan, He Kuo, Abhimanyu Shrestha, Habiba Jamil, Sameera Naseer, Hamza Habib, Song Yang
{"title":"Chronic bisphenol A induced neurotoxicity: Exposure risk, molecular fate within carp and its potential phytoremediation.","authors":"Rabia Tahir, Samra, Fozia Afzal, Hamid Khan, Abdul Ghaffar, Izhar Hyder Qazi, Fatimah Saleh Al-Khattaf, Zhao Liulan, Haoxiao Yan, He Kuo, Abhimanyu Shrestha, Habiba Jamil, Sameera Naseer, Hamza Habib, Song Yang","doi":"10.1016/j.scitotenv.2024.175876","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol A (BPA) is an endocrine-disrupting toxicant commonly used in the plastics industry, as a result, it is present in large quantities in the environment. Therefore, current study was designed to assess BPA induced neurotoxicity and molecular fate within common carp (Cyprinus carpio), largely used edible fish. Following 6 weeks exposure to BPA 1/5th of 96 h LC<sub>50</sub> (1.31 mg/L), brain exhibited oxidative damage, which was evidenced by compromised antioxidant system (CAT, SOD, GSH) and increased level of biomacromolecule peroxidation (MDA and 8-OHDG). Functional damage to the brain observed in the form of blood-brain barrier disruption (decreased tight junction gene expression) and nerve conduction impairment (reduced acetylcholinesterase activity). Mechanistically, apoptotic cell death indicated by characteristic alteration in key biomarkers (bcl-2, caspase, and p53-related gene family). Whereas, coadministration of powdered PP (pomegranate peel) (8 %) with BPA effectively mitigated the BPA toxicity, as evidenced by the restoration of the above-mentioned bioindicators. Thereby, BPA-induced neurotoxicity could be potentially detoxified by applying PP dietary enrichment.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175876","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bisphenol A (BPA) is an endocrine-disrupting toxicant commonly used in the plastics industry, as a result, it is present in large quantities in the environment. Therefore, current study was designed to assess BPA induced neurotoxicity and molecular fate within common carp (Cyprinus carpio), largely used edible fish. Following 6 weeks exposure to BPA 1/5th of 96 h LC50 (1.31 mg/L), brain exhibited oxidative damage, which was evidenced by compromised antioxidant system (CAT, SOD, GSH) and increased level of biomacromolecule peroxidation (MDA and 8-OHDG). Functional damage to the brain observed in the form of blood-brain barrier disruption (decreased tight junction gene expression) and nerve conduction impairment (reduced acetylcholinesterase activity). Mechanistically, apoptotic cell death indicated by characteristic alteration in key biomarkers (bcl-2, caspase, and p53-related gene family). Whereas, coadministration of powdered PP (pomegranate peel) (8 %) with BPA effectively mitigated the BPA toxicity, as evidenced by the restoration of the above-mentioned bioindicators. Thereby, BPA-induced neurotoxicity could be potentially detoxified by applying PP dietary enrichment.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.