The environmental burden of inhalation.

IF 4.3 3区 医学 Q1 PHARMACOLOGY & PHARMACY European Journal of Pharmaceutical Sciences Pub Date : 2024-09-05 DOI:10.1016/j.ejps.2024.106893
A H de Boer
{"title":"The environmental burden of inhalation.","authors":"A H de Boer","doi":"10.1016/j.ejps.2024.106893","DOIUrl":null,"url":null,"abstract":"<p><p>Inhalation systems, mostly metered dose inhalers (MDIs) and dry powder inhalers (DPIs), are currently submitted to a critical assessment for their carbon footprint (CF) and environmental impact. They are related to greenhouse gas (GHG) emissions and they produce waste of used devices with withheld drug residues and unused doses. However, with estimated contributions to anthropogenic GHG-emissions of 0.03% for MDIs and 0.0012% for DPIs globally, it may not be expected that mitigating the GHG emissions from inhalers will have a meaningful effect on the current climate change and global warming, notwithstanding that nationally these percentages may be somewhat higher, depending on the ratio of MDIs to DPIs and the total national CF. MDIs are particularly the preferred type of inhalers over DPIs in the USA and UK with ratios of 9: 1 and 7: 3 respectively. In such countries, a partial switch from MDIs to DPIs is to be recommended, providing that such a switch does not jeopardize the therapy. Using renewable energy only for the production and waste management of DPIs will make this type of inhaler almost climate neutral. A greater concern exists about inhaler waste, more particularly about the residual drug and unused doses in discarded devices. Inhalers contribute less than 0.02% to global plastic waste annually and most plastic inhalers end in the domestic waste bin and not as litter polluting the environment with plastic. However, they do contain retained drug and unused doses, whereas even full inhalers are disposed. Because globally most municipal waste (70%) ends up in dumps and landfills, leakage of the drugs into the soil and surface waters is a serious problem. It pollutes drinking water and endangers species and biodiversity. Therefore, a good collection system and an adequate waste management program for used inhalers seems to be the most meaningful measure to take for the environment, as this will stop inhalers and drugs from putting ecosystems at risk.</p>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejps.2024.106893","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Inhalation systems, mostly metered dose inhalers (MDIs) and dry powder inhalers (DPIs), are currently submitted to a critical assessment for their carbon footprint (CF) and environmental impact. They are related to greenhouse gas (GHG) emissions and they produce waste of used devices with withheld drug residues and unused doses. However, with estimated contributions to anthropogenic GHG-emissions of 0.03% for MDIs and 0.0012% for DPIs globally, it may not be expected that mitigating the GHG emissions from inhalers will have a meaningful effect on the current climate change and global warming, notwithstanding that nationally these percentages may be somewhat higher, depending on the ratio of MDIs to DPIs and the total national CF. MDIs are particularly the preferred type of inhalers over DPIs in the USA and UK with ratios of 9: 1 and 7: 3 respectively. In such countries, a partial switch from MDIs to DPIs is to be recommended, providing that such a switch does not jeopardize the therapy. Using renewable energy only for the production and waste management of DPIs will make this type of inhaler almost climate neutral. A greater concern exists about inhaler waste, more particularly about the residual drug and unused doses in discarded devices. Inhalers contribute less than 0.02% to global plastic waste annually and most plastic inhalers end in the domestic waste bin and not as litter polluting the environment with plastic. However, they do contain retained drug and unused doses, whereas even full inhalers are disposed. Because globally most municipal waste (70%) ends up in dumps and landfills, leakage of the drugs into the soil and surface waters is a serious problem. It pollutes drinking water and endangers species and biodiversity. Therefore, a good collection system and an adequate waste management program for used inhalers seems to be the most meaningful measure to take for the environment, as this will stop inhalers and drugs from putting ecosystems at risk.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吸入造成的环境负担。
吸入系统,主要是计量吸入器(MDI)和干粉吸入器(DPI),目前正接受碳足迹(CF)和环境影响的严格评估。它们与温室气体(GHG)排放有关,并且会产生带有药物残留和未使用剂量的废旧设备。然而,据估计,计量吸入器和干粉吸入器分别占全球人为温室气体排放的 0.03% 和 0.0012%,因此,减少吸入器的温室气体排放可能不会对当前的气候变化和全球变暖产生有意义的影响,尽管根据计量吸入器和干粉吸入器的比例和国家总碳足迹,这些百分比在全国范围内可能会更高一些。在美国和英国,计量吸入器比干粉吸入器更受青睐,比例分别为 9:1 和 7:3。在这些国家,建议从计量吸入器部分转为干粉吸入器,前提是这种转换不会危及治疗。仅在干粉吸入器的生产和废物管理中使用可再生能源,将使这种吸入器几乎不影响气候。对于吸入器废物,尤其是废弃装置中的残留药物和未使用剂量,存在着更大的担忧。吸入器每年在全球塑料废物中所占的比例不到 0.02%,而且大多数塑料吸入器最终都会被扔进家庭垃圾桶,而不会成为污染环境的塑料垃圾。然而,吸入器中确实含有残留的药物和未使用的剂量,而即使是完整的吸入器也会被丢弃。由于全球大多数城市垃圾(70%)都被丢弃在垃圾场和填埋场,因此药物渗漏到土壤和地表水中是一个严重的问题。它污染饮用水,危害物种和生物多样性。因此,为使用过的吸入器建立良好的收集系统和适当的废物管理计划似乎是对环境最有意义的措施,因为这将阻止吸入器和药物危及生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
2.20%
发文量
248
审稿时长
50 days
期刊介绍: The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development. More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making. Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.
期刊最新文献
Evaluating the influence of the initial high molecular weight level on monoclonal antibody particle formation kinetics using a short-term chemical stress study. Editorial: Pharmacometrics and Systems Pharmacology: Principles and Applications. Advances in Understanding Cisplatin-Induced Toxicity: Molecular Mechanisms and Protective Strategies. Artificial intelligence-driven pharmaceutical industry: A paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. Melt-extruded formulations of fenofibrate with various grades of hydrogenated phospholipid exhibit promising in-vitro biopharmaceutical behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1