Direct comparison of single peak and gradient chromatographic methods for routine analysis of surfactants in biopharmaceuticals.

IF 4.3 3区 医学 Q1 PHARMACOLOGY & PHARMACY European Journal of Pharmaceutical Sciences Pub Date : 2025-03-12 DOI:10.1016/j.ejps.2025.107065
Maksymilian M Zegota, Juliane Achenbach, Georg Schuster, Christian Schöneich, Tim Menzen, Andrea Hawe
{"title":"Direct comparison of single peak and gradient chromatographic methods for routine analysis of surfactants in biopharmaceuticals.","authors":"Maksymilian M Zegota, Juliane Achenbach, Georg Schuster, Christian Schöneich, Tim Menzen, Andrea Hawe","doi":"10.1016/j.ejps.2025.107065","DOIUrl":null,"url":null,"abstract":"<p><p>The non-ionic surfactants polysorbate 20, polysorbate 80 and poloxamer 188 are prone to degradation, which necessitates their monitoring as part of the analytical strategy for surfactant- containing biopharmaceuticals. In this study, we discuss the challenges of analyzing partially degraded surfactant samples in the context of the most common quantification method - online solid-phase extraction using a mixed-mode column with analyte elution as a single peak. Additionally, we compare this single peak approach with gradient methods for surfactant quantification. To facilitate this comparison, we developed a simple gradient approach that allows for the rapid profiling of both polysorbates in 5.5 minutes and poloxamer 188 in 11 minutes, using liquid chromatography (LC) coupled with charged aerosol detection (CAD) or mass spectrometry (MS). We also included polyethylene glycol 15 hydroxystearate (HS15) as a possible alternative to the established surfactants. The gradient approach is a stability-indicating method that can detect compositional changes due to common degradation pathways, such as those induced by hydrolytic or oxidative stress, based on changes in the elution profile. The sensitivity of the single peak approach to degradation varies depending on the root cause. In conclusion, we present a workflow in which one chromatographic column employing fast gradients enables effective separation of the main surfactant components, facilitating both qualitative and quantitative analysis, as well as root cause analysis in case of observed degradation.</p>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":" ","pages":"107065"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejps.2025.107065","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The non-ionic surfactants polysorbate 20, polysorbate 80 and poloxamer 188 are prone to degradation, which necessitates their monitoring as part of the analytical strategy for surfactant- containing biopharmaceuticals. In this study, we discuss the challenges of analyzing partially degraded surfactant samples in the context of the most common quantification method - online solid-phase extraction using a mixed-mode column with analyte elution as a single peak. Additionally, we compare this single peak approach with gradient methods for surfactant quantification. To facilitate this comparison, we developed a simple gradient approach that allows for the rapid profiling of both polysorbates in 5.5 minutes and poloxamer 188 in 11 minutes, using liquid chromatography (LC) coupled with charged aerosol detection (CAD) or mass spectrometry (MS). We also included polyethylene glycol 15 hydroxystearate (HS15) as a possible alternative to the established surfactants. The gradient approach is a stability-indicating method that can detect compositional changes due to common degradation pathways, such as those induced by hydrolytic or oxidative stress, based on changes in the elution profile. The sensitivity of the single peak approach to degradation varies depending on the root cause. In conclusion, we present a workflow in which one chromatographic column employing fast gradients enables effective separation of the main surfactant components, facilitating both qualitative and quantitative analysis, as well as root cause analysis in case of observed degradation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
2.20%
发文量
248
审稿时长
50 days
期刊介绍: The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development. More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making. Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.
期刊最新文献
Hierarchical clustering of therapeutic proteins based on agitation-induced aggregation propensity and its relation to physicochemical parameters Transport of statins by multidrug resistance-associated proteins 1 and 5. Direct comparison of single peak and gradient chromatographic methods for routine analysis of surfactants in biopharmaceuticals. DprE1 Inhibitors: An insight into the recent developments and synthetic approaches. Enhancing Martini 3 for protein self-interaction simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1