Physiological properties of auditory neurons responding to omission deviants in the anesthetized rat

IF 2.5 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Hearing Research Pub Date : 2024-08-28 DOI:10.1016/j.heares.2024.109107
{"title":"Physiological properties of auditory neurons responding to omission deviants in the anesthetized rat","authors":"","doi":"10.1016/j.heares.2024.109107","DOIUrl":null,"url":null,"abstract":"<div><h3>Summary</h3><p>The detection of novel, low probability events in the environment is critical for survival. To perform this vital task, our brain is continuously building and updating a model of the outside world; an extensively studied phenomenon commonly referred to as predictive coding. Predictive coding posits that the brain is continuously extracting regularities from the environment to generate predictions. These predictions are then used to supress neuronal responses to redundant information, filtering those inputs, which then automatically enhances the remaining, unexpected inputs.</p><p>We have recently described the ability of auditory neurons to generate predictions about expected sensory inputs by detecting their absence in an oddball paradigm using omitted tones as deviants. Here, we studied the responses of individual neurons to omitted tones by presenting individual sequences of repetitive pure tones, using both random and periodic omissions, presented at both fast and slow rates in the inferior colliculus and auditory cortex neurons of anesthetized rats. Our goal was to determine whether feature-specific dependence of these predictions exists. Results showed that omitted tones could be detected at both high (8 Hz) and slow repetition rates (2 Hz), with detection being more robust at the non-lemniscal auditory pathway.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378595524001606/pdfft?md5=ae1f9fc25be6dc7cf9c64cbfa789fda4&pid=1-s2.0-S0378595524001606-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524001606","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary

The detection of novel, low probability events in the environment is critical for survival. To perform this vital task, our brain is continuously building and updating a model of the outside world; an extensively studied phenomenon commonly referred to as predictive coding. Predictive coding posits that the brain is continuously extracting regularities from the environment to generate predictions. These predictions are then used to supress neuronal responses to redundant information, filtering those inputs, which then automatically enhances the remaining, unexpected inputs.

We have recently described the ability of auditory neurons to generate predictions about expected sensory inputs by detecting their absence in an oddball paradigm using omitted tones as deviants. Here, we studied the responses of individual neurons to omitted tones by presenting individual sequences of repetitive pure tones, using both random and periodic omissions, presented at both fast and slow rates in the inferior colliculus and auditory cortex neurons of anesthetized rats. Our goal was to determine whether feature-specific dependence of these predictions exists. Results showed that omitted tones could be detected at both high (8 Hz) and slow repetition rates (2 Hz), with detection being more robust at the non-lemniscal auditory pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
麻醉大鼠听觉神经元对遗漏偏差做出反应的生理特性
检测环境中的新颖、低概率事件对于生存至关重要。为了完成这项重要任务,我们的大脑不断建立和更新外部世界的模型;这种被广泛研究的现象通常被称为预测编码。预测编码认为,大脑不断从环境中提取规律性的东西,从而产生预测。然后,这些预测被用来抑制神经元对冗余信息的反应,过滤这些输入,然后自动增强剩余的、意外的输入。我们最近描述了听觉神经元通过检测预期感官输入的缺失来产生预测的能力。在这里,我们通过在麻醉大鼠的下丘和听觉皮层神经元中呈现重复纯音的单个序列来研究单个神经元对省略音调的反应,这些省略音调既有随机省略,也有周期性省略。我们的目标是确定这些预测是否存在特异性依赖。结果表明,在高重复率(8 Hz)和低重复率(2 Hz)条件下都能检测到省略的音调,非耳廓听觉通路的检测能力更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hearing Research
Hearing Research 医学-耳鼻喉科学
CiteScore
5.30
自引率
14.30%
发文量
163
审稿时长
75 days
期刊介绍: The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles. Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.
期刊最新文献
Cross-sectional screening for inflammation in tinnitus with near-normal hearing Frequency dependence and harmonic distortion of stapes displacement and intracochlear pressure in response to very high level sounds Auditory changes in awake guinea pigs exposed to overcompressed music Editorial Board Effects of ipsilateral, contralateral, and bilateral noise precursors on psychoacoustical tuning curves in humans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1