Flooding promotes the coalescence of microbial community in estuarine habitats

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2024-09-03 DOI:10.1016/j.marenvres.2024.106735
{"title":"Flooding promotes the coalescence of microbial community in estuarine habitats","authors":"","doi":"10.1016/j.marenvres.2024.106735","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial community coalescence describes the mixing of microbial communities and their integration with the surrounding environment, which is common in natural ecosystems and has potential impacts on ecological processes. However, few studies have focused on microbial community coalescence between different habitats in estuarine regions. In this study, we comprehensively investigated the environmental characteristics and bacterial community changes of different habitats (water body (Water), subtidal sediments (SS) and intertidal salt marsh sediments (SM)) in Luanhe estuary during flood and normal flow periods. The results showed that flood event significantly reduced the salinity of the estuarine habitats, changed the nutrient structure and intensified the eutrophication of estuarine water. By calculating the proportion of overlapping groups and applying the ‘FEAST’ algorithm, we revealed that flood event facilitated the migration of bacterial communities along alternative pathways across habitats, markedly enhanced the cross-habitat mobility of bacterial communities, which underscores the pivotal role of flood event in driving bacterial community coalescence. Flood-induced community coalescence not only increased the α-diversity of bacterial communities within habitats, but also increased the proportion of overlapped species between habitats, ultimately leading to homogenization between habitats. Canonical correlation analysis combined co-occurrence network analysis revealed that flood event attenuated the role of environmental filtration in microbial assembly, while increased the impact of dispersal processes and intensified interspecific competition among microorganisms, led to the change of keystone species and reduced the complexity and stability of bacterial communities. In conclusion, this study demonstrates the complex effects of flood events on estuarine microbial communities from the perspective of multi-habitat interactions in the estuary, and emphasizes the key role of river hydrodynamic conditions in facilitating the coalescence of estuarine microbial communities. We look forward to further attention and research on estuarine microbial coalescence, which will provide new insights into assessing the stability and resilience of estuarine ecosystems under flood challenges and the sustainable management of estuarine wetlands.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624003969","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial community coalescence describes the mixing of microbial communities and their integration with the surrounding environment, which is common in natural ecosystems and has potential impacts on ecological processes. However, few studies have focused on microbial community coalescence between different habitats in estuarine regions. In this study, we comprehensively investigated the environmental characteristics and bacterial community changes of different habitats (water body (Water), subtidal sediments (SS) and intertidal salt marsh sediments (SM)) in Luanhe estuary during flood and normal flow periods. The results showed that flood event significantly reduced the salinity of the estuarine habitats, changed the nutrient structure and intensified the eutrophication of estuarine water. By calculating the proportion of overlapping groups and applying the ‘FEAST’ algorithm, we revealed that flood event facilitated the migration of bacterial communities along alternative pathways across habitats, markedly enhanced the cross-habitat mobility of bacterial communities, which underscores the pivotal role of flood event in driving bacterial community coalescence. Flood-induced community coalescence not only increased the α-diversity of bacterial communities within habitats, but also increased the proportion of overlapped species between habitats, ultimately leading to homogenization between habitats. Canonical correlation analysis combined co-occurrence network analysis revealed that flood event attenuated the role of environmental filtration in microbial assembly, while increased the impact of dispersal processes and intensified interspecific competition among microorganisms, led to the change of keystone species and reduced the complexity and stability of bacterial communities. In conclusion, this study demonstrates the complex effects of flood events on estuarine microbial communities from the perspective of multi-habitat interactions in the estuary, and emphasizes the key role of river hydrodynamic conditions in facilitating the coalescence of estuarine microbial communities. We look forward to further attention and research on estuarine microbial coalescence, which will provide new insights into assessing the stability and resilience of estuarine ecosystems under flood challenges and the sustainable management of estuarine wetlands.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
洪水促进了河口栖息地微生物群落的凝聚。
微生物群落凝聚描述了微生物群落的混合及其与周围环境的融合,这在自然生态系统中很常见,并对生态过程有潜在影响。然而,很少有研究关注河口地区不同生境之间的微生物群落凝聚。本研究全面考察了滦河口不同生境(水体、潮下沉积物和潮间带盐沼沉积物)在洪水期和常水期的环境特征和细菌群落变化。结果表明,洪水事件明显降低了河口生境的盐度,改变了营养结构,加剧了河口水体的富营养化。通过计算重叠群的比例和应用 "FEAST "算法,我们发现洪水事件促进了细菌群落沿不同生境的路径迁移,明显增强了细菌群落的跨生境流动性,这凸显了洪水事件在驱动细菌群落凝聚中的关键作用。洪水引起的群落凝聚不仅增加了栖息地内细菌群落的α-多样性,而且增加了栖息地间重叠物种的比例,最终导致栖息地间的同质化。典型相关分析结合共现网络分析发现,洪水事件削弱了环境过滤在微生物集结中的作用,同时增加了扩散过程的影响,加剧了微生物之间的种间竞争,导致了基石物种的变化,降低了细菌群落的复杂性和稳定性。总之,本研究从河口多生境相互作用的角度展示了洪水事件对河口微生物群落的复杂影响,并强调了河流水动力条件在促进河口微生物群落凝聚过程中的关键作用。我们期待着对河口微生物群落凝聚的进一步关注和研究,这将为评估洪水挑战下河口生态系统的稳定性和恢复力以及河口湿地的可持续管理提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
Microplastic biofilms promote the horizontal transfer of antibiotic resistance genes in estuarine environments. Mutligenerational chronic exposure to near future ocean acidification in European sea bass (Dicentrarchus labrax): Insights into the regulation of the transcriptome in a sensory organ involved in feed intake, the tongue. Quarry rock reef design features influence fish assemblage structure across a systematically heterogenous restoration reef. Microbial ocean-atmosphere transfer: The influence of sewage discharge into coastal waters on bioaerosols from an urban beach in the subtropical Atlantic. Skeletal magnesium content in Antarctic echinoderms along a latitudinal gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1