{"title":"The transcription factor TabZIP156 acts as a positive regulator in response to drought tolerance in Arabidopsis and wheat (Triticum aestivum L.)","authors":"","doi":"10.1016/j.plaphy.2024.109086","DOIUrl":null,"url":null,"abstract":"<div><p>Drought stress strongly restricts the growth, development, and yield of wheat worldwide. Among the various transcription factors (TFs) involved in the wheat drought response, the specific functions of many basic leucine zipper (bZIP) TFs related to drought tolerance are still not well understood. In this study, we focused on the bZIP TF <em>TabZIP156</em> in wheat. Our analysis showed that <em>TabZIP156</em> was highly expressed in both roots and leaves, and it responded to drought and abscisic acid (ABA) stress. Through subcellular localization and transactivation assays, we confirmed that TabZIP156 was located to the nucleus and functioned as a transcriptional activator. Overexpression of <em>TabZIP156</em> in <em>Arabidopsis</em> enhanced drought tolerance, as evidenced by higher germination rate, longer root length, lower water loss rate, reduced ion leakage, increased proline accumulation, decreased levels of H<sub>2</sub>O<sub>2</sub>, O<sup>2−</sup> and MDA, and improved activities of POD, SOD, and CAT enzymes. Additionally, the expression of drought- and antioxidant-related genes were significantly upregulated in <em>TabZIP156</em> transgenic <em>Arabidopsis</em> under drought stress. However, silencing <em>TabZIP156</em> in wheat led to decreased proline content, increased accumulation of H<sub>2</sub>O<sub>2</sub>, O<sup>2−</sup> and MDA, reduced activities of antioxidant enzymes, and downregulation of many drought- and antioxidant-related genes under drought stress. Furthermore, the dual-luciferase assay demonstrated that <em>TabZIP156</em> could activate the expression of <em>TaP5CS</em>, <em>TaDREB1A</em>, and <em>TaPOD</em> by binding to their promoters. Taken together, this study highlights the significant role of <em>TabZIP156</em> in drought stress and provides valuable insights for its potential application in breeding drought-resistant wheat.</p></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S098194282400754X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought stress strongly restricts the growth, development, and yield of wheat worldwide. Among the various transcription factors (TFs) involved in the wheat drought response, the specific functions of many basic leucine zipper (bZIP) TFs related to drought tolerance are still not well understood. In this study, we focused on the bZIP TF TabZIP156 in wheat. Our analysis showed that TabZIP156 was highly expressed in both roots and leaves, and it responded to drought and abscisic acid (ABA) stress. Through subcellular localization and transactivation assays, we confirmed that TabZIP156 was located to the nucleus and functioned as a transcriptional activator. Overexpression of TabZIP156 in Arabidopsis enhanced drought tolerance, as evidenced by higher germination rate, longer root length, lower water loss rate, reduced ion leakage, increased proline accumulation, decreased levels of H2O2, O2− and MDA, and improved activities of POD, SOD, and CAT enzymes. Additionally, the expression of drought- and antioxidant-related genes were significantly upregulated in TabZIP156 transgenic Arabidopsis under drought stress. However, silencing TabZIP156 in wheat led to decreased proline content, increased accumulation of H2O2, O2− and MDA, reduced activities of antioxidant enzymes, and downregulation of many drought- and antioxidant-related genes under drought stress. Furthermore, the dual-luciferase assay demonstrated that TabZIP156 could activate the expression of TaP5CS, TaDREB1A, and TaPOD by binding to their promoters. Taken together, this study highlights the significant role of TabZIP156 in drought stress and provides valuable insights for its potential application in breeding drought-resistant wheat.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.