Chenyang Gao , Zhao Huang , Jianyi You , WenBo Zhang , Shengqiu Tang , Lang Gong , Guihong Zhang
{"title":"Identification of a novel B cell epitope of ASFV pCP312R recognized using a monoclonal antibody","authors":"Chenyang Gao , Zhao Huang , Jianyi You , WenBo Zhang , Shengqiu Tang , Lang Gong , Guihong Zhang","doi":"10.1016/j.vetmic.2024.110247","DOIUrl":null,"url":null,"abstract":"<div><p>African swine fever (ASF) is an acute and devastating infectious disease that has caused significant economic losses to the global pig industry since it was first discovered and reported. African swine fever virus (ASFV) has a large genome encoding more than 160 proteins. The biological characteristics and functions of its various proteins still remain unclear; therefore, the efficacy of specific drugs and vaccines against ASFV remains limited. ASFV pCP312R is an important ASFV protein that exhibits good immunogenicity. In this study, five monoclonal antibodies (mAbs) targeting pCP312R were successfully prepared. Confocal microscopy observations showed that pCP312R was located in the viral factory at the late stage of ASFV infection, and was co-located with p30 and pK205R. These results suggested that pCP312R might be involved in ASFV assembly. Neutralization tests revealed that pCP312R mAb could not neutralize ASFV. Next, we identified the B cell epitopes of one of the most immunogenic mAbs and found a novel epitope of pCP312R, <sup>72</sup>TIPPSTDEEVIR<sup>83</sup>, which was conserved in different pCP312R strains. Overall, five ASFV pCP312R monoclonal antibodies were prepared, and the antigenic epitope of one strain was identified in this study, laying a foundation for further studies on ASFV pCP312R function and facilitating serological diagnosis vaccine development for ASFV.</p></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"298 ","pages":"Article 110247"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113524002694","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
African swine fever (ASF) is an acute and devastating infectious disease that has caused significant economic losses to the global pig industry since it was first discovered and reported. African swine fever virus (ASFV) has a large genome encoding more than 160 proteins. The biological characteristics and functions of its various proteins still remain unclear; therefore, the efficacy of specific drugs and vaccines against ASFV remains limited. ASFV pCP312R is an important ASFV protein that exhibits good immunogenicity. In this study, five monoclonal antibodies (mAbs) targeting pCP312R were successfully prepared. Confocal microscopy observations showed that pCP312R was located in the viral factory at the late stage of ASFV infection, and was co-located with p30 and pK205R. These results suggested that pCP312R might be involved in ASFV assembly. Neutralization tests revealed that pCP312R mAb could not neutralize ASFV. Next, we identified the B cell epitopes of one of the most immunogenic mAbs and found a novel epitope of pCP312R, 72TIPPSTDEEVIR83, which was conserved in different pCP312R strains. Overall, five ASFV pCP312R monoclonal antibodies were prepared, and the antigenic epitope of one strain was identified in this study, laying a foundation for further studies on ASFV pCP312R function and facilitating serological diagnosis vaccine development for ASFV.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.