Intercellular Molecular Transfer Mediated by Extracellular Vesicles in Cancer.

Q4 Biochemistry, Genetics and Molecular Biology Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI:10.1007/978-3-031-62036-2_14
Lata Adnani, Janusz Rak
{"title":"Intercellular Molecular Transfer Mediated by Extracellular Vesicles in Cancer.","authors":"Lata Adnani, Janusz Rak","doi":"10.1007/978-3-031-62036-2_14","DOIUrl":null,"url":null,"abstract":"<p><p>Among multiple pathways of intercellular communication operative in multicellular organisms, the trafficking of extracellular vesicles (EVs) and particles (EP) represents a unique mode of cellular information exchange with emerging roles in health and disease, including cancer. A distinctive feature of EV/EP-mediated cell-cell communication is that it involves simultaneous short- or long-range transfer of numerous molecular constituents (cargo) from donor to recipient cells. EV/EP uptake by donor cells elicits signalling or metabolic responses, or else leads to EV-re-emission or degradation. EVs are heterogeneous membranous structures released from cells via increasingly defined mechanisms involving either formation of multivesicular endosomes (exosomes) or budding from the plasma membrane (ectosomes). EPs (exomeres, supermeres) are membraneless complex particles, smaller than EVs and of less defined biogenesis and function. EVs/EPs carry complex assemblies of proteins, lipids and nucleic acids (RNA, DNA), which they shuttle into intercellular milieu, body fluids and recipient cells, via surface contact, fusion and different forms of internalization (endocytosis, micropinocytosis). While the physiological functions of EVs/EPs communication pathways continue to be investigated, their roles in cancer are increasingly well-defined. For example, EVs are involved in the transmission of cancer-specific molecular cargo, including mutant, oncogenic, transforming, or regulatory macromolecules to indolent, or normal cells, sometimes triggering their quasi-transformation-like states, or phenotypic alterations. Conversely, a reciprocal and avid uptake of stromal EVs by cancer cells may be responsible for modulating their oncogenic repertoire, as exemplified by the angiocrine effects of endothelial EVs influencing cancer cell stemness. EV exchanges during cancer progression have also been implicated in the formation of tumour stroma, angiogenesis and non-angiogenic neovascularization processes, immunosuppression, colonization of metastatic organ sites (premetastatic niche), paraneoplastic and systemic pathologies (thrombosis, diabetes, hepatotoxicity). Thus, an EV/EP-mediated horizontal transfer of cellular content emerges as a new dimension in cancer pathogenesis with functional, diagnostic, and therapeutic implications.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-62036-2_14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Among multiple pathways of intercellular communication operative in multicellular organisms, the trafficking of extracellular vesicles (EVs) and particles (EP) represents a unique mode of cellular information exchange with emerging roles in health and disease, including cancer. A distinctive feature of EV/EP-mediated cell-cell communication is that it involves simultaneous short- or long-range transfer of numerous molecular constituents (cargo) from donor to recipient cells. EV/EP uptake by donor cells elicits signalling or metabolic responses, or else leads to EV-re-emission or degradation. EVs are heterogeneous membranous structures released from cells via increasingly defined mechanisms involving either formation of multivesicular endosomes (exosomes) or budding from the plasma membrane (ectosomes). EPs (exomeres, supermeres) are membraneless complex particles, smaller than EVs and of less defined biogenesis and function. EVs/EPs carry complex assemblies of proteins, lipids and nucleic acids (RNA, DNA), which they shuttle into intercellular milieu, body fluids and recipient cells, via surface contact, fusion and different forms of internalization (endocytosis, micropinocytosis). While the physiological functions of EVs/EPs communication pathways continue to be investigated, their roles in cancer are increasingly well-defined. For example, EVs are involved in the transmission of cancer-specific molecular cargo, including mutant, oncogenic, transforming, or regulatory macromolecules to indolent, or normal cells, sometimes triggering their quasi-transformation-like states, or phenotypic alterations. Conversely, a reciprocal and avid uptake of stromal EVs by cancer cells may be responsible for modulating their oncogenic repertoire, as exemplified by the angiocrine effects of endothelial EVs influencing cancer cell stemness. EV exchanges during cancer progression have also been implicated in the formation of tumour stroma, angiogenesis and non-angiogenic neovascularization processes, immunosuppression, colonization of metastatic organ sites (premetastatic niche), paraneoplastic and systemic pathologies (thrombosis, diabetes, hepatotoxicity). Thus, an EV/EP-mediated horizontal transfer of cellular content emerges as a new dimension in cancer pathogenesis with functional, diagnostic, and therapeutic implications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌症中由细胞外囊泡介导的细胞间分子转移
在多细胞生物体细胞间通信的多种途径中,胞外囊泡(EV)和颗粒(EP)的贩运是一种独特的细胞信息交换模式,在健康和疾病(包括癌症)中发挥着新的作用。EV/EP介导的细胞-细胞通讯的一个显著特点是,它涉及大量分子成分(货物)从供体细胞到受体细胞的同时短程或长程转移。EV/EP被供体细胞吸收后会引起信号或代谢反应,否则会导致EV再释放或降解。EV 是一种从细胞中释放出来的异质膜结构,其释放机制日益明确,包括形成多泡内体(外泌体)或从质膜上出芽(外泌体)。EPs(外泌体、超泌体)是无膜的复杂颗粒,比EVs小,其生物发生和功能不太明确。EVs/EPs携带蛋白质、脂类和核酸(RNA、DNA)的复杂组合体,它们通过表面接触、融合和不同形式的内化(内吞、微胞吞)穿梭到细胞间环境、体液和受体细胞中。EVs/EPs通讯途径的生理功能仍在研究之中,而它们在癌症中的作用也越来越明确。例如,EVs 参与了癌症特异性分子货物(包括突变、致癌、转化或调控大分子)向不活跃细胞或正常细胞的传输,有时会引发它们的类转化状态或表型改变。相反,癌细胞对基质 EVs 的相互和热衷吸收可能是调节其致癌物清单的原因,内皮 EVs 影响癌细胞干性的血管内分泌效应就是一例。癌症进展过程中的 EV 交换还与肿瘤基质的形成、血管生成和非血管生成性新生血管过程、免疫抑制、转移器官部位的定植(转移前生态位)、副肿瘤性和全身性病症(血栓形成、糖尿病、肝毒性)有关。因此,EV/EP 介导的细胞内容水平转移成为癌症发病机制的一个新维度,具有功能、诊断和治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results and Problems in Cell Differentiation
Results and Problems in Cell Differentiation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
1.90
自引率
0.00%
发文量
21
期刊介绍: Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.
期刊最新文献
Early Syncytialization of the Ovine Placenta Revisited. HIV-1 Induced Cell-to-Cell Fusion or Syncytium Formation. Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle. Osteoclasts at Bone Remodeling: Order from Order.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1