Orchestrating Blood Flow in the Retina: Interpericyte Tunnelling Nanotube Communication.

Q4 Biochemistry, Genetics and Molecular Biology Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI:10.1007/978-3-031-62036-2_11
Hannah McDonald, Jesse Gardner-Russell, Luis Alarcon-Martinez
{"title":"Orchestrating Blood Flow in the Retina: Interpericyte Tunnelling Nanotube Communication.","authors":"Hannah McDonald, Jesse Gardner-Russell, Luis Alarcon-Martinez","doi":"10.1007/978-3-031-62036-2_11","DOIUrl":null,"url":null,"abstract":"<p><p>The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-62036-2_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协调视网膜中的血流:膜间隧道纳米管通信
视网膜将光线转化为电信号,通过视神经发送到大脑,形成我们的视觉感知。这种复杂的信号处理由视网膜神经元完成,需要大量的能量。由于神经元无法储存能量,它们必须从血液中获取葡萄糖和氧气来产生能量,以满足新陈代谢的需要。这一过程被称为神经血管耦合(NVC),其精确机制尚未完全明了。被称为隧道纳米管(TNTs)的细管过程的发现开创了一种新型的细胞间通信方式。TNTs 是细胞膜的延伸,可以在相连的细胞之间传输物质。最近,在活体小鼠的大脑和视网膜中发现了TNTs,它们连接着血管壁细胞周细胞,这些细胞负责调节血管直径。因此,这些 TNT 被称为 "周细胞间隧道纳米管(IPTNT)",在血液输送和 NVC 中发挥着重要作用。在本章中,我们将回顾 TNTs 在视网膜神经变性中的参与,并讨论它们在视网膜神经变性中的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results and Problems in Cell Differentiation
Results and Problems in Cell Differentiation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
1.90
自引率
0.00%
发文量
21
期刊介绍: Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.
期刊最新文献
Early Syncytialization of the Ovine Placenta Revisited. HIV-1 Induced Cell-to-Cell Fusion or Syncytium Formation. Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle. Osteoclasts at Bone Remodeling: Order from Order.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1