Defining the Soluble and Extracellular Vesicle Protein Compartments of Plasma Using In-Depth Mass Spectrometry-Based Proteomics

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-14 DOI:10.1021/acs.jproteome.4c0049010.1021/acs.jproteome.4c00490
Nidhi Sharma*, Silvia Angori, AnnSofi Sandberg, Georgios Mermelekas, Janne Lehtiö, Oscar P. B. Wiklander, André Görgens, Samir El Andaloussi, Hanna Eriksson* and Maria Pernemalm*, 
{"title":"Defining the Soluble and Extracellular Vesicle Protein Compartments of Plasma Using In-Depth Mass Spectrometry-Based Proteomics","authors":"Nidhi Sharma*,&nbsp;Silvia Angori,&nbsp;AnnSofi Sandberg,&nbsp;Georgios Mermelekas,&nbsp;Janne Lehtiö,&nbsp;Oscar P. B. Wiklander,&nbsp;André Görgens,&nbsp;Samir El Andaloussi,&nbsp;Hanna Eriksson* and Maria Pernemalm*,&nbsp;","doi":"10.1021/acs.jproteome.4c0049010.1021/acs.jproteome.4c00490","DOIUrl":null,"url":null,"abstract":"<p >Plasma-derived extracellular vesicles (pEVs) are a potential source of diseased biomarker proteins. However, characterizing the pEV proteome is challenging due to its relatively low abundance and difficulties in enrichment. This study presents a streamlined workflow to identify EV proteins from cancer patient plasma using minimal sample input. Starting with 400 μL of plasma, we generated a comprehensive pEV proteome using size exclusion chromatography (SEC) combined with HiRIEF prefractionation-based mass spectrometry (MS). First, we compared the performance of HiRIEF and long gradient MS workflows using control pEVs, quantifying 2076 proteins with HiRIEF. In a proof-of-concept study, we applied SEC–HiRIEF–MS to a small cohort (12) of metastatic lung adenocarcinoma (LUAD) and malignant melanoma (MM) patients. We also analyzed plasma samples from the same patients to study the relationship between plasma and pEV proteomes. We identified and quantified 1583 proteins in cancer pEVs and 1468 proteins in plasma across all samples. While there was substantial overlap, the pEV proteome included several unique EV markers and cancer-related proteins. Differential analysis revealed 30 DEPs in LUAD vs the MM group, highlighting the potential of pEVs as biomarkers. This work demonstrates the utility of a prefractionation-based MS for comprehensive pEV proteomics and EV biomarker discovery. Data are available via ProteomeXchange with the identifiers PXD039338 and PXD038528.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.4c00490","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00490","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma-derived extracellular vesicles (pEVs) are a potential source of diseased biomarker proteins. However, characterizing the pEV proteome is challenging due to its relatively low abundance and difficulties in enrichment. This study presents a streamlined workflow to identify EV proteins from cancer patient plasma using minimal sample input. Starting with 400 μL of plasma, we generated a comprehensive pEV proteome using size exclusion chromatography (SEC) combined with HiRIEF prefractionation-based mass spectrometry (MS). First, we compared the performance of HiRIEF and long gradient MS workflows using control pEVs, quantifying 2076 proteins with HiRIEF. In a proof-of-concept study, we applied SEC–HiRIEF–MS to a small cohort (12) of metastatic lung adenocarcinoma (LUAD) and malignant melanoma (MM) patients. We also analyzed plasma samples from the same patients to study the relationship between plasma and pEV proteomes. We identified and quantified 1583 proteins in cancer pEVs and 1468 proteins in plasma across all samples. While there was substantial overlap, the pEV proteome included several unique EV markers and cancer-related proteins. Differential analysis revealed 30 DEPs in LUAD vs the MM group, highlighting the potential of pEVs as biomarkers. This work demonstrates the utility of a prefractionation-based MS for comprehensive pEV proteomics and EV biomarker discovery. Data are available via ProteomeXchange with the identifiers PXD039338 and PXD038528.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于质谱的深度蛋白质组学确定血浆中的可溶性和细胞外囊泡蛋白质区系
源自血浆的细胞外囊泡(pEV)是疾病生物标志物蛋白质的潜在来源。然而,由于其丰度相对较低且难以富集,表征pEV蛋白质组具有挑战性。本研究提出了一种简化的工作流程,利用最少的样本输入从癌症患者血浆中鉴定 EV 蛋白。从 400 μL 的血浆开始,我们使用尺寸排阻色谱(SEC)结合基于 HiRIEF 预分馏的质谱(MS)生成了全面的 pEV 蛋白质组。首先,我们使用对照 pEV 比较了 HiRIEF 和长梯度 MS 工作流程的性能,使用 HiRIEF 量化了 2076 个蛋白质。在概念验证研究中,我们将 SEC-HiRIEF-MS 应用于转移性肺腺癌(LUAD)和恶性黑色素瘤(MM)患者小群(12 人)。我们还分析了同一患者的血浆样本,以研究血浆和 pEV 蛋白质组之间的关系。在所有样本中,我们鉴定并量化了癌症 pEV 中的 1583 个蛋白质和血浆中的 1468 个蛋白质。虽然存在大量重叠,但 pEV 蛋白质组中包括了几种独特的 EV 标记和癌症相关蛋白。差异分析显示,LUAD组与MM组相比有30个DEPs,这凸显了pEVs作为生物标记物的潜力。这项工作证明了基于预分馏的质谱技术在全面的pEV蛋白质组学和EV生物标记物发现方面的实用性。数据可通过 ProteomeXchange 获取,标识符为 PXD039338 和 PXD038528。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1