Tuning the thermal resistance of SiGe phononic interfaces across ballistic and diffusive regimes

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2024-09-07 DOI:10.1016/j.ijheatmasstransfer.2024.126144
{"title":"Tuning the thermal resistance of SiGe phononic interfaces across ballistic and diffusive regimes","authors":"","doi":"10.1016/j.ijheatmasstransfer.2024.126144","DOIUrl":null,"url":null,"abstract":"<div><p>Interfacial thermal resistance plays a pivotal role in thermal management applications, including efficient heat dissipation, energy harvesting from waste heat, and thermal barrier coatings. This study delves into the thermal resistance characteristics of a SiGe phononic material layer, positioned between two Si or Ge thermostats (Si/SiGe/Si and Ge/SiGe/Ge). We discover that the lateral period of the phononic crystal <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, which is oriented perpendicular to the direction of thermal transport, can be used as an additional parameter to modulate thermal resistance. Notably, we observed distinct transport behaviors across phononic interfaces with varying <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> in ballistic and diffusive transport regimes. In the ballistic limit, particularly in thinner layers, the thermal resistance diminishes with an increase in <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Conversely, in thicker phononic layers, a local maximum in thermal resistance emerges at a specific <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. For smaller thicknesses, the increased overlap in phonon density-of-states between the phononic region and the thermostats at a larger <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, enhances ballistic transport, thereby reducing thermal resistance. In the diffusive limit, the interplay between mode conversion within and between [0 <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>G</mi><mi>e</mi></mrow></msub></math></span>] and [<span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>G</mi><mi>e</mi></mrow></msub></math></span> <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>S</mi><mi>i</mi></mrow></msub></math></span>] ranges is pivotal for the observed maximum thermal resistances and distinct temperature profiles in the Si and Ge blocks. Our findings not only highlight differing transport mechanisms at phononic interfaces in ballistic and diffusive regimes, but also demonstrate a novel approach to tuning interfacial thermal resistances using phononic materials. This has significant implications for designing materials optimized for both heat dissipation and energy conversion applications.</p></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024009748","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial thermal resistance plays a pivotal role in thermal management applications, including efficient heat dissipation, energy harvesting from waste heat, and thermal barrier coatings. This study delves into the thermal resistance characteristics of a SiGe phononic material layer, positioned between two Si or Ge thermostats (Si/SiGe/Si and Ge/SiGe/Ge). We discover that the lateral period of the phononic crystal Wp, which is oriented perpendicular to the direction of thermal transport, can be used as an additional parameter to modulate thermal resistance. Notably, we observed distinct transport behaviors across phononic interfaces with varying Wp in ballistic and diffusive transport regimes. In the ballistic limit, particularly in thinner layers, the thermal resistance diminishes with an increase in Wp. Conversely, in thicker phononic layers, a local maximum in thermal resistance emerges at a specific Wp. For smaller thicknesses, the increased overlap in phonon density-of-states between the phononic region and the thermostats at a larger Wp, enhances ballistic transport, thereby reducing thermal resistance. In the diffusive limit, the interplay between mode conversion within and between [0 ΘGe] and [ΘGe ΘSi] ranges is pivotal for the observed maximum thermal resistances and distinct temperature profiles in the Si and Ge blocks. Our findings not only highlight differing transport mechanisms at phononic interfaces in ballistic and diffusive regimes, but also demonstrate a novel approach to tuning interfacial thermal resistances using phononic materials. This has significant implications for designing materials optimized for both heat dissipation and energy conversion applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在弹道和扩散状态下调整 SiGe 声子界面的热阻
界面热阻在热管理应用中起着举足轻重的作用,包括高效散热、废热能量收集和热障涂层。本研究深入探讨了位于两个硅或锗恒温器(硅/硅锗/硅和锗/硅锗/锗)之间的硅锗声波材料层的热阻特性。我们发现,垂直于热传输方向的声子晶体横向周期 Wp 可用作调节热阻的附加参数。值得注意的是,我们观察到在弹道和扩散传输系统中,不同 Wp 的声波界面具有不同的传输行为。在弹道极限中,尤其是在较薄的层中,热阻随着 Wp 的增加而减小。相反,在较厚的声波层中,热阻会在特定 Wp 下出现局部最大值。对于厚度较小的层,在较大 Wp 时,声子区和恒温器之间的声子态密度重叠增加,从而增强了弹道传输,从而降低了热阻。在扩散极限中,[0 ΘGe]和[ΘGe ΘSi]范围内和之间的模式转换之间的相互作用,对于在硅块和锗块中观察到的最大热阻和不同的温度曲线至关重要。我们的发现不仅凸显了声波界面在弹道和扩散状态下的不同传输机制,还展示了一种利用声波材料调节界面热阻的新方法。这对设计优化散热和能量转换应用的材料具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Boiling enhancement on the thermally induced deformation surfaces Homogenization-based analysis of pyrolysis and mechanical degradation of ablative silica fiber-reinforced phenolic resin composites Reinterpreting the segregation potential model for frozen soils Development of a numerical model for frost formation on ultra-low temperature surfaces considering both desublimation and fog deposition Experimental investigation on flow boiling heat transfer of fuel cladding with chalk river unidentified deposits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1