{"title":"Energy-aware reliability guarantee scheduling with semi-clairvoyant in mixed-criticality systems","authors":"Yi-Wen Zhang, Hui Zheng","doi":"10.1016/j.sysarc.2024.103269","DOIUrl":null,"url":null,"abstract":"<div><p>The management of energy in mixed-criticality systems (MCS) has been widely accomplished through Dynamic Voltage and Frequency Scaling (DVFS) techniques. Nevertheless, recent studies indicated that the DVFS has a negative impact on the reliability of the MCS. In this work, we investigate the problem of reliability-aware power management (RAPM) for semi-clairvoyant MCS with the objective of saving energy while meeting both reliability and deadline constraints. We first address the RAPM problem in semi-clairvoyant MCS with the imprecise mixed-criticality task model. Then, we analyze the feasibility issue of MCS under the constraints of deadline and reliability using the Demand Bound Function and derive sufficient conditions of the schedulability test. Based on the analysis, we propose an energy-aware reliability guarantee scheduling algorithm, called EARGS, which reduces energy consumption while satisfying both the deadline and reliability constraints. Finally, the experiment results indicate that the EARGS algorithm saves approximately 25.80 % of energy consumption compared to other state-of-the-art methods.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"156 ","pages":"Article 103269"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124002066","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The management of energy in mixed-criticality systems (MCS) has been widely accomplished through Dynamic Voltage and Frequency Scaling (DVFS) techniques. Nevertheless, recent studies indicated that the DVFS has a negative impact on the reliability of the MCS. In this work, we investigate the problem of reliability-aware power management (RAPM) for semi-clairvoyant MCS with the objective of saving energy while meeting both reliability and deadline constraints. We first address the RAPM problem in semi-clairvoyant MCS with the imprecise mixed-criticality task model. Then, we analyze the feasibility issue of MCS under the constraints of deadline and reliability using the Demand Bound Function and derive sufficient conditions of the schedulability test. Based on the analysis, we propose an energy-aware reliability guarantee scheduling algorithm, called EARGS, which reduces energy consumption while satisfying both the deadline and reliability constraints. Finally, the experiment results indicate that the EARGS algorithm saves approximately 25.80 % of energy consumption compared to other state-of-the-art methods.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.