{"title":"Experimental and numerical investigations on rate-dependent fracture behavior of concrete-rock interface","authors":"","doi":"10.1016/j.tafmec.2024.104646","DOIUrl":null,"url":null,"abstract":"<div><p>To ensure the safety and stability of the concrete gravity dams built in the seismic regions, this study investigated the rate-dependent fracture behavior of the concrete-rock interfaces with different roughness degrees. Firstly, direct tensile tests and three-point bending tests were conducted to measure the mechanical and fracture properties of the concrete-rock interface with three roughness degrees, i.e. the 4 × 4 interface, natural interface, and 7 × 7 interface, and under four strain rates, i.e. 10<sup>-5</sup>/s, 10<sup>-4</sup>/s, 10<sup>-3</sup>/s, and 10<sup>-2</sup>/s. By employing the fictitious crack model and initial fracture toughness-based crack propagation criterion, numerical simulations were conducted to analyze the crack propagation processes of the concrete-rock interfaces under different strain rates. The results indicated that the tensile strength and initial fracture toughness exhibited an obvious increasing tendency with the increase of the strain rates, and they showed a nearly linear relationship with the logarithms of the strain rates. Prediction models were proposed to calculate the tensile strength and initial fracture toughness of the concrete-rock interface under different strain rates. In addition, the initial fracture toughness-based crack propagation criterion was proved to be applicable to analyze the crack propagation processes of the concrete-rock interfaces under both quasi-static and seismic strain rates. It was found that the fully-formed fracture process zone lengths and the corresponding crack length decreased obviously with the increase of the strain rates, indicating that the boundary effect of the concrete became stronger under the higher strain rates, which approached to the fracture behaviors of the large-size specimens.</p></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224003963","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To ensure the safety and stability of the concrete gravity dams built in the seismic regions, this study investigated the rate-dependent fracture behavior of the concrete-rock interfaces with different roughness degrees. Firstly, direct tensile tests and three-point bending tests were conducted to measure the mechanical and fracture properties of the concrete-rock interface with three roughness degrees, i.e. the 4 × 4 interface, natural interface, and 7 × 7 interface, and under four strain rates, i.e. 10-5/s, 10-4/s, 10-3/s, and 10-2/s. By employing the fictitious crack model and initial fracture toughness-based crack propagation criterion, numerical simulations were conducted to analyze the crack propagation processes of the concrete-rock interfaces under different strain rates. The results indicated that the tensile strength and initial fracture toughness exhibited an obvious increasing tendency with the increase of the strain rates, and they showed a nearly linear relationship with the logarithms of the strain rates. Prediction models were proposed to calculate the tensile strength and initial fracture toughness of the concrete-rock interface under different strain rates. In addition, the initial fracture toughness-based crack propagation criterion was proved to be applicable to analyze the crack propagation processes of the concrete-rock interfaces under both quasi-static and seismic strain rates. It was found that the fully-formed fracture process zone lengths and the corresponding crack length decreased obviously with the increase of the strain rates, indicating that the boundary effect of the concrete became stronger under the higher strain rates, which approached to the fracture behaviors of the large-size specimens.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.