A new strategy for springback compensation of spatial tube product in free bending technology

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Pressure Vessels and Piping Pub Date : 2024-09-06 DOI:10.1016/j.ijpvp.2024.105305
Shuai Zhang , Zhenming Yue , Aijun Xu , Yusen Li , Yuliang Qiu , Fanjuan Meng
{"title":"A new strategy for springback compensation of spatial tube product in free bending technology","authors":"Shuai Zhang ,&nbsp;Zhenming Yue ,&nbsp;Aijun Xu ,&nbsp;Yusen Li ,&nbsp;Yuliang Qiu ,&nbsp;Fanjuan Meng","doi":"10.1016/j.ijpvp.2024.105305","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional free bending technology (3D-FBT), as an innovative tube forming process, can achieve complex spatial tube components. However, caused by springback problem how to optimize its forming accuracy for the spatially curved components of tubes is still a major issue. In this study, a springback compensation model for variable curvature tube bending components is constructed and validated based on a developed discretization methodology. The central axis curve of the tube is discretized, and the spatial compensation angles in different cylindrical helix elements were incrementally calculated by a springback analysis model, in which the stress neutral layer offset on the cross-section of the tube induced by axial thrust force. Finally, the validation and accuracy of the proposed methodology is proved through a typical 3D tube component of AL6061. By comparing the numerical and experimental results, it is found that the average shape error of the 3D component is 2.62 mm (24.52 mm without compensation).</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105305"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124001820","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional free bending technology (3D-FBT), as an innovative tube forming process, can achieve complex spatial tube components. However, caused by springback problem how to optimize its forming accuracy for the spatially curved components of tubes is still a major issue. In this study, a springback compensation model for variable curvature tube bending components is constructed and validated based on a developed discretization methodology. The central axis curve of the tube is discretized, and the spatial compensation angles in different cylindrical helix elements were incrementally calculated by a springback analysis model, in which the stress neutral layer offset on the cross-section of the tube induced by axial thrust force. Finally, the validation and accuracy of the proposed methodology is proved through a typical 3D tube component of AL6061. By comparing the numerical and experimental results, it is found that the average shape error of the 3D component is 2.62 mm (24.52 mm without compensation).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自由弯曲技术中空间管产品回弹补偿的新策略
三维自由弯曲技术(3D-FBT)作为一种创新的管材成型工艺,可以实现复杂的空间管材部件。然而,由于回弹问题,如何优化空间弯曲管件的成形精度仍是一个主要问题。在本研究中,基于开发的离散化方法,构建并验证了变曲率管材弯曲部件的回弹补偿模型。在轴向推力的作用下,管子横截面上的应力中性层发生偏移,通过回弹分析模型对管子的中心轴曲线进行离散化,并逐步计算不同圆柱螺旋元素中的空间补偿角。最后,通过一个典型的 AL6061 三维管组件证明了所提方法的有效性和准确性。通过比较数值结果和实验结果,发现三维部件的平均形状误差为 2.62 毫米(无补偿时为 24.52 毫米)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
期刊最新文献
Enhanced creep lifetime in P91 steel weldments via stabilizing tempered martensite structure Study on stress concentration and fatigue life of tubing with slip indentation Failure mechanisms of fusion-bonded reinforcement joints in reinforced thermoplastic pipes under uniaxial tensile conditions A comprehensive finite element framework for modeling of PEX-Al-PEX composite pipes Effects of different types of corrosion on seismic performance of circular hollow section T-joints subjected to coupling load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1