New parameters for the capacitive accelerometer to reduce its measurement error and power consumption

{"title":"New parameters for the capacitive accelerometer to reduce its measurement error and power consumption","authors":"","doi":"10.1016/j.meaene.2024.100018","DOIUrl":null,"url":null,"abstract":"<div><p>Capacitive accelerometers are essential components in a wide range of electronic devices, enabling crucial functionalities such as touch sensitivity and proximity detection. Ensuring optimal accuracy is crucial for their effective performance in various applications. A key factor in this accuracy is the frequency margin, a parameter that significantly influences the sensor's ability to detect and respond to changes in capacitance.</p><p>In this article, we will delve deeply into strategies aimed at optimizing capacitive sensors with a focus on improving their frequency margin. By exploring the methodologies and techniques that enhance the sensor's ability to operate within an ideal frequency range, we aim to improve the measurement accuracy of capacitive accelerometers by reducing measurement errors and power consumption. This optimization process involves meticulous calibration of sensor parameters such as sensitivity, resonance frequency, and damping factors to maximize performance under various environmental conditions. The new capacitive accelerometer structure improves sensitivity, linearity, and accuracy through advanced measurement setups and design, offering high-performance acceleration measurements suitable for various applications and reliable data collection and calibration.</p></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950345024000186/pdfft?md5=27354cd3bf30a8c047a62a2039a4f237&pid=1-s2.0-S2950345024000186-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345024000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Capacitive accelerometers are essential components in a wide range of electronic devices, enabling crucial functionalities such as touch sensitivity and proximity detection. Ensuring optimal accuracy is crucial for their effective performance in various applications. A key factor in this accuracy is the frequency margin, a parameter that significantly influences the sensor's ability to detect and respond to changes in capacitance.

In this article, we will delve deeply into strategies aimed at optimizing capacitive sensors with a focus on improving their frequency margin. By exploring the methodologies and techniques that enhance the sensor's ability to operate within an ideal frequency range, we aim to improve the measurement accuracy of capacitive accelerometers by reducing measurement errors and power consumption. This optimization process involves meticulous calibration of sensor parameters such as sensitivity, resonance frequency, and damping factors to maximize performance under various environmental conditions. The new capacitive accelerometer structure improves sensitivity, linearity, and accuracy through advanced measurement setups and design, offering high-performance acceleration measurements suitable for various applications and reliable data collection and calibration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电容式加速度计的新参数可减少测量误差和功耗
电容式加速度计是各种电子设备的重要组件,可实现触摸灵敏度和接近检测等重要功能。要在各种应用中有效发挥其性能,确保最佳精度至关重要。频率余量是影响精度的一个关键因素,这一参数极大地影响了传感器检测和响应电容变化的能力。在本文中,我们将深入探讨旨在优化电容式传感器的策略,重点是提高其频率余量。通过探索提高传感器在理想频率范围内工作能力的方法和技术,我们旨在通过减少测量误差和功耗来提高电容式加速度计的测量精度。这一优化过程包括对灵敏度、共振频率和阻尼系数等传感器参数进行细致校准,以便在各种环境条件下最大限度地提高性能。新型电容式加速度计结构通过先进的测量设置和设计提高了灵敏度、线性度和精度,提供了适合各种应用的高性能加速度测量以及可靠的数据采集和校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PMU-based voltage estimation and distributed generation effects in active distribution networks An optimization approach for enhancing energy efficiency, reducing CO2 emission, and improving lubrication reliability in roller bearings using ABC algorithm Analysis of transmission pathways of combustion-induced vibration in a diesel engine using wavelet cross-correlation analysis method Accelerated lithium-ion battery cycle lifetime testing by condition-based reference performance tests New parameters for the capacitive accelerometer to reduce its measurement error and power consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1