Ali Maghami , Qingao Wang , Michele Tricarico , Michele Ciavarella , Qunyang Li , Antonio Papangelo
{"title":"Bulk and fracture process zone contribution to the rate-dependent adhesion amplification in viscoelastic broad-band materials","authors":"Ali Maghami , Qingao Wang , Michele Tricarico , Michele Ciavarella , Qunyang Li , Antonio Papangelo","doi":"10.1016/j.jmps.2024.105844","DOIUrl":null,"url":null,"abstract":"<div><p>The contact between a rigid Hertzian indenter and an adhesive broad-band viscoelastic substrate is considered. The material behavior is described by a modified power law model, which is characterized by only four parameters, the glassy and rubbery elastic moduli, a characteristic exponent <span><math><mi>n</mi></math></span> and a timescale <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The maximum adherence force that can be reached while unloading the rigid indenter from a relaxed viscoelastic half-space is studied by means of a numerical implementation based on the boundary element method, as a function of the unloading velocity, preload and by varying the broadness of the viscoelastic material spectrum. Through a comprehensive numerical analysis we have determined the minimum contact radius that is needed to achieve the maximum amplification of the pull-off force at a specified unloading rate and for different material exponents <span><math><mi>n</mi></math></span>. The numerical results are then compared with the prediction of Persson and Brener viscoelastic crack propagation theory, providing excellent agreement. However, comparison against experimental tests for a glass lens indenting a PDMS substrate shows data can be fitted with the linear theory only up to an unloading rate of about <span><math><mrow><mn>100</mn><mspace></mspace><mi>μ</mi><mi>m/s</mi></mrow></math></span> showing the fracture process zone rate-dependent contribution to the energy enhancement is of the same order of the bulk dissipation contribution. Hence, the limitations of the current numerical and theoretical models for viscoelastic adhesion are discussed in light of the most recent literature results.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105844"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003107","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The contact between a rigid Hertzian indenter and an adhesive broad-band viscoelastic substrate is considered. The material behavior is described by a modified power law model, which is characterized by only four parameters, the glassy and rubbery elastic moduli, a characteristic exponent and a timescale . The maximum adherence force that can be reached while unloading the rigid indenter from a relaxed viscoelastic half-space is studied by means of a numerical implementation based on the boundary element method, as a function of the unloading velocity, preload and by varying the broadness of the viscoelastic material spectrum. Through a comprehensive numerical analysis we have determined the minimum contact radius that is needed to achieve the maximum amplification of the pull-off force at a specified unloading rate and for different material exponents . The numerical results are then compared with the prediction of Persson and Brener viscoelastic crack propagation theory, providing excellent agreement. However, comparison against experimental tests for a glass lens indenting a PDMS substrate shows data can be fitted with the linear theory only up to an unloading rate of about showing the fracture process zone rate-dependent contribution to the energy enhancement is of the same order of the bulk dissipation contribution. Hence, the limitations of the current numerical and theoretical models for viscoelastic adhesion are discussed in light of the most recent literature results.
研究考虑了刚性赫兹压头与粘性宽带粘弹性基底之间的接触。材料行为由修正的幂律模型描述,该模型只有四个参数,即玻璃和橡胶弹性模量、特征指数 n 和时标 τ0。通过基于边界元法的数值实施,研究了从松弛的粘弹性半空间对刚性压头进行卸载时可达到的最大附着力,该附着力是卸载速度、预载荷和改变粘弹性材料频谱宽度的函数。通过全面的数值分析,我们确定了在特定卸载速度和不同材料指数 n 下实现拉拔力最大放大所需的最小接触半径。然而,通过与玻璃透镜压入 PDMS 基底的实验测试进行比较,结果表明只有在卸载速率达到约 100μm/s 时,数据才能与线性理论相匹配,这表明断裂过程区速率对能量增强的贡献与体积耗散的贡献处于同一数量级。因此,我们根据最新的文献结果讨论了当前粘弹性粘附数值和理论模型的局限性。
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.