首页 > 最新文献

Journal of The Mechanics and Physics of Solids最新文献

英文 中文
Effect of water redistribution on the fracture of hydrogel in mechanochemical equilibrium state 水重分配对力学化学平衡状态下水凝胶破裂的影响
IF 5.3 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-20 DOI: 10.1016/j.jmps.2025.106491
Yan Yang, Qifang Zhang, Junjie Liu, Guozheng Kang, Tiejun Wang
{"title":"Effect of water redistribution on the fracture of hydrogel in mechanochemical equilibrium state","authors":"Yan Yang, Qifang Zhang, Junjie Liu, Guozheng Kang, Tiejun Wang","doi":"10.1016/j.jmps.2025.106491","DOIUrl":"https://doi.org/10.1016/j.jmps.2025.106491","url":null,"abstract":"","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"4 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse Elastica: A Theoretical Framework for Inverse Design of Morphing Slender Structures 反弹性:变形细长结构反设计的理论框架
IF 5.3 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-20 DOI: 10.1016/j.jmps.2025.106488
JiaHao Li, Weicheng Huang, Yinbo Zhu, Luxia Yu, Xiaohao Sun, Mingchao Liu, HengAn Wu
{"title":"Inverse Elastica: A Theoretical Framework for Inverse Design of Morphing Slender Structures","authors":"JiaHao Li, Weicheng Huang, Yinbo Zhu, Luxia Yu, Xiaohao Sun, Mingchao Liu, HengAn Wu","doi":"10.1016/j.jmps.2025.106488","DOIUrl":"https://doi.org/10.1016/j.jmps.2025.106488","url":null,"abstract":"","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"22 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TPMS sheet structures with orthorhombic symmetry: anisotropic elasticity and energy absorption 正交对称TPMS片材结构:各向异性弹性和能量吸收
IF 5.3 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-20 DOI: 10.1016/j.jmps.2025.106489
Stephen Daynes
{"title":"TPMS sheet structures with orthorhombic symmetry: anisotropic elasticity and energy absorption","authors":"Stephen Daynes","doi":"10.1016/j.jmps.2025.106489","DOIUrl":"https://doi.org/10.1016/j.jmps.2025.106489","url":null,"abstract":"","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"20 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance to interface sliding and effects on detachment of directly-bonded pillars 直粘柱的界面滑动阻力及其对分离的影响
IF 5.3 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-18 DOI: 10.1016/j.jmps.2025.106484
Ranny R. Zhao, Kevin T. Turner, John L. Bassani
{"title":"Resistance to interface sliding and effects on detachment of directly-bonded pillars","authors":"Ranny R. Zhao, Kevin T. Turner, John L. Bassani","doi":"10.1016/j.jmps.2025.106484","DOIUrl":"https://doi.org/10.1016/j.jmps.2025.106484","url":null,"abstract":"","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"1 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuum theory for the mechanics of curved epithelial shells by coarse-graining an ensemble of active gel cellular surfaces 由活性凝胶细胞表面组成的粗粒合成的弯曲上皮壳力学的连续统理论
IF 5.3 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-18 DOI: 10.1016/j.jmps.2025.106477
Pradeep K. Bal, Adam Ouzeri, Marino Arroyo
{"title":"Continuum theory for the mechanics of curved epithelial shells by coarse-graining an ensemble of active gel cellular surfaces","authors":"Pradeep K. Bal, Adam Ouzeri, Marino Arroyo","doi":"10.1016/j.jmps.2025.106477","DOIUrl":"https://doi.org/10.1016/j.jmps.2025.106477","url":null,"abstract":"","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"17 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale modeling on evolving grain boundary network in polycrystals incorporating triple junction migration 含三结迁移的多晶晶界网络演化的多尺度模拟
IF 5.3 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-18 DOI: 10.1016/j.jmps.2025.106485
Qishan Huang, Zhenghao Zhang, Haofei Zhou, Wei Yang
{"title":"Multiscale modeling on evolving grain boundary network in polycrystals incorporating triple junction migration","authors":"Qishan Huang, Zhenghao Zhang, Haofei Zhou, Wei Yang","doi":"10.1016/j.jmps.2025.106485","DOIUrl":"https://doi.org/10.1016/j.jmps.2025.106485","url":null,"abstract":"","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"172 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase-field cohesive fracture models with strong displacement discontinuities 具有强位移不连续的相场内聚裂缝模型
IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-16 DOI: 10.1016/j.jmps.2025.106479
Ye Feng , Lu Hai
This paper develops a novel class of phase-field cohesive fracture models that naturally incorporate strong displacement discontinuities within a continuum framework. We derive the nonhomogeneous analytical solutions in one dimension (1D), demonstrating for the first time the emergence of a Dirac δ-function-type strain in phase-field models from crack nucleation to complete rupture, without requiring the limit of vanishing phase-field characteristic length ℓ. This enables the direct representation of discrete crack displacement jumps. We demonstrate the instability of homogeneous solutions through a second-order stability analysis, further highlighting the significance of the derived singular nonhomogeneous solutions. The proposed approach overcomes the limitation of conventional phase-field methods in capturing strong discontinuities, while retaining their advantages-such as mesh objectivity and the ability to handle complex crack topologies-due to the retained diffusive phase-field distribution. Furthermore, the implementation of the cohesive law into the phase-field model can be achieved in a more straightforward manner. The model’s effectiveness beyond 1D is validated by 2D and 3D numerical examples. These developments may open new possibilities for: (i) multiscale fracture analysis where competing length scales coexist, and (ii) multiphysics problems requiring precise kinematics of crack opening.
本文开发了一类新的相场内聚裂缝模型,它在连续体框架内自然地包含了强位移不连续面。我们在一维(1D)上导出了非齐次解析解,首次证明了相场模型中从裂纹成核到完全破裂存在Dirac δ函数型应变,而不需要相场特征长度消失的极限。这使得离散裂缝位移跳跃的直接表示成为可能。通过二阶稳定性分析证明了齐次解的不稳定性,进一步强调了奇异非齐次解的意义。该方法克服了传统相场方法在捕获强不连续面方面的局限性,同时保留了传统相场方法的优点,如网格客观性和处理复杂裂纹拓扑的能力,这是由于保留了扩散相场分布。此外,内聚定律在相场模型中的实现可以以更直接的方式实现。通过二维和三维数值算例验证了该模型在一维以外的有效性。这些发展可能为以下领域带来新的可能性:(1)相互竞争的长度尺度共存的多尺度断裂分析;(2)需要精确的裂纹张开运动学的多物理场问题。
{"title":"Phase-field cohesive fracture models with strong displacement discontinuities","authors":"Ye Feng ,&nbsp;Lu Hai","doi":"10.1016/j.jmps.2025.106479","DOIUrl":"10.1016/j.jmps.2025.106479","url":null,"abstract":"<div><div>This paper develops a novel class of phase-field cohesive fracture models that naturally incorporate strong displacement discontinuities within a continuum framework. We derive the nonhomogeneous analytical solutions in one dimension (1D), demonstrating <em>for the first time</em> the emergence of a Dirac <em>δ</em>-function-type strain in phase-field models from crack nucleation to complete rupture, without requiring the limit of vanishing phase-field characteristic length ℓ. This enables the direct representation of discrete crack displacement jumps. We demonstrate the instability of homogeneous solutions through a second-order stability analysis, further highlighting the significance of the derived singular nonhomogeneous solutions. The proposed approach overcomes the limitation of conventional phase-field methods in capturing strong discontinuities, while retaining their advantages-such as mesh objectivity and the ability to handle complex crack topologies-due to the retained diffusive phase-field distribution. Furthermore, the implementation of the cohesive law into the phase-field model can be achieved in a more straightforward manner. The model’s effectiveness beyond 1D is validated by 2D and 3D numerical examples. These developments may open new possibilities for: (i) multiscale fracture analysis where competing length scales coexist, and (ii) multiphysics problems requiring precise kinematics of crack opening.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"208 ","pages":"Article 106479"},"PeriodicalIF":6.0,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using a negative exponent to prevent unphysical instability in fiber-reinforced hyperelastic materials 利用负指数防止纤维增强超弹性材料的非物理不稳定性
IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1016/j.jmps.2025.106480
Hio Konishi , Seishiro Matsubara , So Nagashima , Dai Okumura
In this study, we refine the strain energy function of fiber-reinforced hyperelastic materials by adding a unique nonlinear term with a negative exponent on I4, i.e., I4M1(M>0), where I4 is the pseudo-invariant of the right Cauchy–Green tensor, defined as the squared stretch in a fiber direction. This additional term is comprehensively tested when combined with the simple linear form (I41) or the conventional quadratic form (I41)2. The conventional quadratic form causes unphysical material instability under principal stretches, where the instantaneous stiffness changes negatively in certain deformation regions. Using the negative exponent on I4 can prevent this instability. The specific linear combination, (I41)+(I4M1)/M, is unconditionally free from the instability under principal stretches. The instantaneous stiffness is linearly enhanced by fiber reinforcement, unlike the complex responses by a quadratic combination. This refinement is not incompatible with the physical interpretation of the material instability under simple shear deformation. A comprehensive understanding is achieved through the sufficient condition for I4 derived from the strong ellipticity inequality.
在本研究中,我们通过在I4上添加一个唯一的具有负指数的非线性项,即I4−M−1(M>0)来改进纤维增强超弹性材料的应变能函数,其中I4是右Cauchy-Green张量的伪不变量,定义为纤维方向上的平方拉伸。当与简单的线性形式(I4−1)或常规的二次形式(I4−1)2结合时,对这一附加项进行了全面的检验。在主拉伸作用下,传统的二次形式会导致材料的非物理失稳,在某些变形区域,瞬时刚度呈负变化。使用I4的负指数可以防止这种不稳定性。特定的线性组合(I4−1)+(I4−M−1)/M无条件地不存在主拉伸下的失稳。与二次组合的复杂响应不同,纤维增强的瞬时刚度是线性增强的。这种细化与单纯剪切变形下材料失稳的物理解释并不矛盾。通过由强椭圆性不等式推导出的I4的充分条件,得到了全面的认识。
{"title":"Using a negative exponent to prevent unphysical instability in fiber-reinforced hyperelastic materials","authors":"Hio Konishi ,&nbsp;Seishiro Matsubara ,&nbsp;So Nagashima ,&nbsp;Dai Okumura","doi":"10.1016/j.jmps.2025.106480","DOIUrl":"10.1016/j.jmps.2025.106480","url":null,"abstract":"<div><div>In this study, we refine the strain energy function of fiber-reinforced hyperelastic materials by adding a unique nonlinear term with a negative exponent on <span><math><msub><mi>I</mi><mn>4</mn></msub></math></span>, i.e., <span><math><mrow><msubsup><mi>I</mi><mn>4</mn><mrow><mo>−</mo><mi>M</mi></mrow></msubsup><mo>−</mo><mn>1</mn><mspace></mspace><mrow><mo>(</mo><mi>M</mi><mo>&gt;</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mi>I</mi><mn>4</mn></msub></math></span> is the pseudo-invariant of the right Cauchy–Green tensor, defined as the squared stretch in a fiber direction. This additional term is comprehensively tested when combined with the simple linear form <span><math><mrow><mo>(</mo><mrow><msub><mi>I</mi><mn>4</mn></msub><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow></math></span> or the conventional quadratic form <span><math><msup><mrow><mo>(</mo><mrow><msub><mi>I</mi><mn>4</mn></msub><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow><mn>2</mn></msup></math></span>. The conventional quadratic form causes unphysical material instability under principal stretches, where the instantaneous stiffness changes negatively in certain deformation regions. Using the negative exponent on <span><math><msub><mi>I</mi><mn>4</mn></msub></math></span> can prevent this instability. The specific linear combination, <span><math><mrow><mrow><mo>(</mo><mrow><msub><mi>I</mi><mn>4</mn></msub><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mrow><msubsup><mi>I</mi><mn>4</mn><mrow><mo>−</mo><mi>M</mi></mrow></msubsup><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>/</mo><mi>M</mi></mrow></math></span>, is unconditionally free from the instability under principal stretches. The instantaneous stiffness is linearly enhanced by fiber reinforcement, unlike the complex responses by a quadratic combination. This refinement is not incompatible with the physical interpretation of the material instability under simple shear deformation. A comprehensive understanding is achieved through the sufficient condition for <span><math><msub><mi>I</mi><mn>4</mn></msub></math></span> derived from the strong ellipticity inequality.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"208 ","pages":"Article 106480"},"PeriodicalIF":6.0,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145760384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic data-driven inference of mesoscale lattice discrete particle model parameters via multiscale observations 基于多尺度观测的中尺度点阵离散粒子模型参数的随机数据驱动推断
IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1016/j.jmps.2025.106481
Baixi Chen, Alessandro Fascetti
Concrete failure mechanics exhibit significant variability at the macroscopic scale, which is predominantly driven by stochasticity at the spatial scale of the coarse aggregate particles, generally referred to as mesoscopic scale. However, mesoscale material parameters are difficult to estimate, making uncertainty quantification a fundamental challenge. To address this limitation, a data-driven multiscale inverse inference framework is proposed to quantify the stochastic mesoscale behavior by integrating both mesoscale and macroscale observations. In this framework, a stochastic data-driven model using a hybrid Proper Orthogonal Decomposition–Gaussian Process Regression (POD-GPR) algorithm is first developed based on data generated by mesoscale Lattice Discrete Particle Model (LDPM) simulations. Leveraging this efficient data-driven model, a novel multiscale Bayesian inverse inference method is proposed to infer the stochastic distributions of the mesoscale features. When applied to experimental data, the proposed framework successfully captures the stochastic distributions of mesoscale material parameters, reproduces macroscale responses, and outperforms conventional single-scale Bayesian inference approaches. Additionally, SHapley Additive exPlanations (SHAP) are integrated to further interpret the effect of mesoscale stochastic material behavior on macroscale uncertainty, offering valuable insights for the accuracy improvement of LDPM simulations and future mesoscale-level optimization to achieve more robust macroscale performance.
混凝土破坏力学在宏观尺度上表现出显著的可变性,这主要是由组成材料的空间尺度上的随机性驱动的,通常称为细观尺度。然而,中尺度材料参数难以估计,使得不确定性量化成为一个基本挑战。为了解决这一限制,提出了一个数据驱动的多尺度逆推理框架,通过整合中尺度和宏观观测来量化随机中尺度行为。在此框架下,首先基于中尺度点阵离散粒子模型(LDPM)模拟生成的数据,建立了一个使用混合适当正交分解-高斯过程回归(POD-GPR)算法的随机数据驱动模型。利用这种高效的数据驱动模型,提出了一种新的多尺度贝叶斯逆推理方法来推断中尺度特征的随机分布。当应用于实验数据时,所提出的框架成功地捕获了中尺度材料参数的随机分布,再现了宏观尺度的响应,并且优于传统的单尺度贝叶斯推理方法。此外,还集成了SHapley加性解释(SHAP)来进一步解释中尺度随机材料行为对宏观尺度不确定性的影响,为LDPM模拟精度的提高和未来中尺度优化提供了有价值的见解,以实现更稳健的宏观尺度性能。
{"title":"Stochastic data-driven inference of mesoscale lattice discrete particle model parameters via multiscale observations","authors":"Baixi Chen,&nbsp;Alessandro Fascetti","doi":"10.1016/j.jmps.2025.106481","DOIUrl":"10.1016/j.jmps.2025.106481","url":null,"abstract":"<div><div>Concrete failure mechanics exhibit significant variability at the macroscopic scale, which is predominantly driven by stochasticity at the spatial scale of the coarse aggregate particles, generally referred to as mesoscopic scale. However, mesoscale material parameters are difficult to estimate, making uncertainty quantification a fundamental challenge. To address this limitation, a data-driven multiscale inverse inference framework is proposed to quantify the stochastic mesoscale behavior by integrating both mesoscale and macroscale observations. In this framework, a stochastic data-driven model using a hybrid Proper Orthogonal Decomposition–Gaussian Process Regression (POD-GPR) algorithm is first developed based on data generated by mesoscale Lattice Discrete Particle Model (LDPM) simulations. Leveraging this efficient data-driven model, a novel multiscale Bayesian inverse inference method is proposed to infer the stochastic distributions of the mesoscale features. When applied to experimental data, the proposed framework successfully captures the stochastic distributions of mesoscale material parameters, reproduces macroscale responses, and outperforms conventional single-scale Bayesian inference approaches. Additionally, SHapley Additive exPlanations (SHAP) are integrated to further interpret the effect of mesoscale stochastic material behavior on macroscale uncertainty, offering valuable insights for the accuracy improvement of LDPM simulations and future mesoscale-level optimization to achieve more robust macroscale performance.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"208 ","pages":"Article 106481"},"PeriodicalIF":6.0,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145760442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistically informed partial dislocation dynamics of multi-principal element alloys 多主元素合金的原子信息局部位错动力学
IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-12 DOI: 10.1016/j.jmps.2025.106478
Xin Liu , Hyunsoo Lee , Yang Li , Liam Myhill , David Rodney , Pierre-Antoine Geslin , Nikhil Chandra Admal , Giacomo Po , Enrique Martinez , Yinan Cui
Multi-principal element alloys (MPEAs) continue to attract considerable attention. However, one fundamental question regarding their plasticity remains far from well understood, namely, how the nanoscale heterogeneity and chemical short-range order (SRO) control dislocation motion and plasticity. Different from previous studies incorporating statistical variations of the energy landscape into full dislocation dynamics, the current work proposes an innovative atomistically informed partial dislocation dynamics (PDD) method, which directly considers the spatially-correlated non-uniform planar fault energy (PFE) at the atomic scale, and at the same time benefits from the larger temporal and spatial scales of the dislocation dynamics methods. Through systematic analysis, we find that the PFE field exhibits a negative correlation along the atomic slip direction, which reduces the critical stress required for dislocation motion in that direction. In contrast, the correlation characteristics along other directions can be approximated as uncorrelated noise, which also contributes to strengthening. In addition, it is found that SRO only slightly enhances the correlation strength along certain crystallographic directions, while it weakens the degree of negative correlation along the slip direction. Overall, the increase in the mean PFE induced by SRO significantly contributes to the strengthening of the dislocation depinning transition. The proposed model provides new opportunities for designing MPEAs with tailored macroscopic mechanical properties by manipulating their atomic distribution and spatial correlations.
多主元素合金(mpea)继续受到广泛关注。然而,关于其塑性的一个基本问题仍未得到很好的理解,即纳米尺度的非均质性和化学短程有序(SRO)是如何控制位错运动和塑性的。与以往将能量格局的统计变化纳入全位错动力学的研究不同,本文提出了一种创新的原子信息部分位错动力学(PDD)方法,该方法在原子尺度上直接考虑空间相关的非均匀平面断层能量(PFE),同时受益于位错动力学方法的更大时空尺度。通过系统分析,我们发现PFE场沿原子滑移方向呈负相关,这降低了位错在该方向运动所需的临界应力。相反,沿其他方向的相关特征可以近似为不相关噪声,这也有助于增强。此外,SRO仅在某些晶体学方向上轻微增强了相关强度,而在滑移方向上则减弱了负相关程度。总的来说,SRO引起的平均PFE的增加显著有助于位错脱脱转变的加强。所提出的模型为通过控制原子分布和空间相关性来设计具有定制宏观力学性能的mpea提供了新的机会。
{"title":"Atomistically informed partial dislocation dynamics of multi-principal element alloys","authors":"Xin Liu ,&nbsp;Hyunsoo Lee ,&nbsp;Yang Li ,&nbsp;Liam Myhill ,&nbsp;David Rodney ,&nbsp;Pierre-Antoine Geslin ,&nbsp;Nikhil Chandra Admal ,&nbsp;Giacomo Po ,&nbsp;Enrique Martinez ,&nbsp;Yinan Cui","doi":"10.1016/j.jmps.2025.106478","DOIUrl":"10.1016/j.jmps.2025.106478","url":null,"abstract":"<div><div>Multi-principal element alloys (MPEAs) continue to attract considerable attention. However, one fundamental question regarding their plasticity remains far from well understood, namely, how the nanoscale heterogeneity and chemical short-range order (SRO) control dislocation motion and plasticity. Different from previous studies incorporating statistical variations of the energy landscape into full dislocation dynamics, the current work proposes an innovative atomistically informed partial dislocation dynamics (PDD) method, which directly considers the spatially-correlated non-uniform planar fault energy (PFE) at the atomic scale, and at the same time benefits from the larger temporal and spatial scales of the dislocation dynamics methods. Through systematic analysis, we find that the PFE field exhibits a negative correlation along the atomic slip direction, which reduces the critical stress required for dislocation motion in that direction. In contrast, the correlation characteristics along other directions can be approximated as uncorrelated noise, which also contributes to strengthening. In addition, it is found that SRO only slightly enhances the correlation strength along certain crystallographic directions, while it weakens the degree of negative correlation along the slip direction. Overall, the increase in the mean PFE induced by SRO significantly contributes to the strengthening of the dislocation depinning transition. The proposed model provides new opportunities for designing MPEAs with tailored macroscopic mechanical properties by manipulating their atomic distribution and spatial correlations.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"208 ","pages":"Article 106478"},"PeriodicalIF":6.0,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of The Mechanics and Physics of Solids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1