{"title":"Treatment of oily wastewater using submerged photocatalytic membrane reactor","authors":"Hassan G. Gomaa, Wen Zhou, Jesse Zhu","doi":"10.1016/j.partic.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>The increase in oily contaminated wastewater emissions has made it essential to develop efficient treatment approaches to mitigate its negative impact on the ecosystem and human health. In this research, a suspended catalyst photocatalytic membrane reactor (SPMR) is developed for simultaneous oil-water separation as well as pollutants degradation using ZnO as a photocatalyst and a submerged LED-UV light. A composite membrane unit was used in the reactor that was made of a polymeric layer and a superhydrophilic (SHPI) underwater oleophobic layer. The later was prepared by attaching ZnO nanoparticles (NP) on stainless steel mesh using the spraying method. The pure water flux of the composite membrane was comparable to that of the pristine polymeric membrane indicating minor resistance of the SHPI layer. For oil-water emulsion, water flux ∼1332 L m<sup>−2</sup> h<sup>−1</sup> was achieved at 20 kPa transmembrane pressure (TMP) with ∼99% oil separation efficiency. Using methylene blue dye (MB) decolourizations to assess simultaneous oil-water separation and pollutant degradation efficiencies, close to 86% dye decolourization and near complete oil water separation was achieved. The results suggest a promising potential of the proposed design for treatment of contaminated oily wastewater.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 252-260"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001640","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increase in oily contaminated wastewater emissions has made it essential to develop efficient treatment approaches to mitigate its negative impact on the ecosystem and human health. In this research, a suspended catalyst photocatalytic membrane reactor (SPMR) is developed for simultaneous oil-water separation as well as pollutants degradation using ZnO as a photocatalyst and a submerged LED-UV light. A composite membrane unit was used in the reactor that was made of a polymeric layer and a superhydrophilic (SHPI) underwater oleophobic layer. The later was prepared by attaching ZnO nanoparticles (NP) on stainless steel mesh using the spraying method. The pure water flux of the composite membrane was comparable to that of the pristine polymeric membrane indicating minor resistance of the SHPI layer. For oil-water emulsion, water flux ∼1332 L m−2 h−1 was achieved at 20 kPa transmembrane pressure (TMP) with ∼99% oil separation efficiency. Using methylene blue dye (MB) decolourizations to assess simultaneous oil-water separation and pollutant degradation efficiencies, close to 86% dye decolourization and near complete oil water separation was achieved. The results suggest a promising potential of the proposed design for treatment of contaminated oily wastewater.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.