Controllable and lightweight ZIF-67@PAN derived Co@C nanocomposites with tunable and broadband microwave absorption

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2024-09-02 DOI:10.1016/j.compositesa.2024.108445
{"title":"Controllable and lightweight ZIF-67@PAN derived Co@C nanocomposites with tunable and broadband microwave absorption","authors":"","doi":"10.1016/j.compositesa.2024.108445","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic framework-based carbon–carbon composite represent a novel class of microwave-absorbing materials (MAMs). However, obtaining lightweight and highly efficient absorbers with a lower filling ratio and larger effective absorption bandwidth (EAB) poses a challenge. In this study, we developed a controllable preparation method for ZIF-67 template polyacrylonitrile-wrapped nanocomposite (ZIF-67@PAN) precursor. This was achieved through radical polymerization of acrylonitrile (AN) initiated by azobisisobutyronitrile (AIBN). Subsequent annealing at high temperatures produced a lightweight nitrogen and oxygen-doped graphite layer-wrapped Co@C smart material (Co@C<sub>1</sub>, Co@C<sub>2</sub>, and Co@C<sub>3</sub>) with tunable microwave absorption properties (MAP). The results demonstrate that Co@C<sub>2</sub> achieved a minimum reflection loss (RL<sub>min</sub>) value of −50.20 dB at a thickness of 2.0 mm with an EAB of 6.1 only at a filler content of only 13 %. Therefore, this work offers a controllable preparation method and introduces a simple and facile approach for creating efficient, lightweight micro and nano-sized microwave-absorbing materials.</p></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24004421","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic framework-based carbon–carbon composite represent a novel class of microwave-absorbing materials (MAMs). However, obtaining lightweight and highly efficient absorbers with a lower filling ratio and larger effective absorption bandwidth (EAB) poses a challenge. In this study, we developed a controllable preparation method for ZIF-67 template polyacrylonitrile-wrapped nanocomposite (ZIF-67@PAN) precursor. This was achieved through radical polymerization of acrylonitrile (AN) initiated by azobisisobutyronitrile (AIBN). Subsequent annealing at high temperatures produced a lightweight nitrogen and oxygen-doped graphite layer-wrapped Co@C smart material (Co@C1, Co@C2, and Co@C3) with tunable microwave absorption properties (MAP). The results demonstrate that Co@C2 achieved a minimum reflection loss (RLmin) value of −50.20 dB at a thickness of 2.0 mm with an EAB of 6.1 only at a filler content of only 13 %. Therefore, this work offers a controllable preparation method and introduces a simple and facile approach for creating efficient, lightweight micro and nano-sized microwave-absorbing materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可调宽带微波吸收的可控轻质 ZIF-67@PAN 衍生 Co@C 纳米复合材料
基于金属有机框架的碳碳复合材料是一类新型微波吸收材料(MAM)。然而,如何获得具有较低填充率和较大有效吸收带宽(EAB)的轻质高效吸收体是一项挑战。在本研究中,我们开发了一种可控的 ZIF-67 模板聚丙烯腈包裹纳米复合材料(ZIF-67@PAN)前体的制备方法。这是通过偶氮二异丁腈(AIBN)引发的丙烯腈(AN)自由基聚合实现的。随后的高温退火产生了轻质的氮氧掺杂石墨层包裹的 Co@C 智能材料(Co@C1、Co@C2 和 Co@C3),具有可调微波吸收特性(MAP)。结果表明,Co@C2 在填充物含量仅为 13% 时,厚度为 2.0 mm 时的最小反射损耗 (RLmin) 值为 -50.20 dB,EAB 为 6.1。因此,这项工作提供了一种可控的制备方法,并为制造高效、轻质的微米级和纳米级微波吸收材料提供了一种简单易行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
Editorial Board Fabrication of core–shell nickel ferrite@polypyrrole composite for broadband and efficient electromagnetic wave absorption Flexible conductive adhesives with high conductivity and infrared stealth performance Shape-programmable hard-magnetic soft actuators with high magnetic particle content via digital light processing method Intelligent predicting and monitoring of ultra-high-performance fiber reinforced concrete composites − A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1