Jian Gan , Chao Jiang , Yizhi Zhang , Yifan Zhang , Jiawei Song , Ke Xu , Benson Kunhung Tsai , Xuanyu Sheng , Haiyan Wang , Yinbin Miao , Peter Mouche , Kun Mo , Bei Ye
{"title":"Effect of TiN coating on suppressing Ce-Fe interaction under irradiation","authors":"Jian Gan , Chao Jiang , Yizhi Zhang , Yifan Zhang , Jiawei Song , Ke Xu , Benson Kunhung Tsai , Xuanyu Sheng , Haiyan Wang , Yinbin Miao , Peter Mouche , Kun Mo , Bei Ye","doi":"10.1016/j.mtla.2024.102221","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced cladding is critical for fast reactors with the adequate thermal conductivity, mechanical stability and radiation tolerance of the cladding base material, corrosion resistance and high temperature coolant compatibility of the cladding surface, and chemical stability of the cladding inner wall against fuel cladding chemical interaction (FCCI). The preliminary results of recent ion irradiation studies of two diffusion-couple samples of cerium (Ce)/oxide-dispersion strengthened steel (ODS) and Ce/TiN/ODS, irradiated with 80 MeV xenon (Xe) ions to 100 displacements per atom (dpa) at 500°C, are summarized. Significant Ce-Fe interaction occurred in the Ce/ODS sample, and no noticeable Ce-Fe interaction was found in the Ce/TiN/ODS sample. It shows the effectiveness of 1-µm TiN diffusion barrier coated by the pulsed laser deposition on suppressing Ce-Fe interaction, a major contributor to FCCI in cladding. Density function theory (DFT) calculations of the impurity diffusivities of Ce and Fe within the Ti sublattice of TiN were performed to assist a mechanistic understanding of the experimental results.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102221"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced cladding is critical for fast reactors with the adequate thermal conductivity, mechanical stability and radiation tolerance of the cladding base material, corrosion resistance and high temperature coolant compatibility of the cladding surface, and chemical stability of the cladding inner wall against fuel cladding chemical interaction (FCCI). The preliminary results of recent ion irradiation studies of two diffusion-couple samples of cerium (Ce)/oxide-dispersion strengthened steel (ODS) and Ce/TiN/ODS, irradiated with 80 MeV xenon (Xe) ions to 100 displacements per atom (dpa) at 500°C, are summarized. Significant Ce-Fe interaction occurred in the Ce/ODS sample, and no noticeable Ce-Fe interaction was found in the Ce/TiN/ODS sample. It shows the effectiveness of 1-µm TiN diffusion barrier coated by the pulsed laser deposition on suppressing Ce-Fe interaction, a major contributor to FCCI in cladding. Density function theory (DFT) calculations of the impurity diffusivities of Ce and Fe within the Ti sublattice of TiN were performed to assist a mechanistic understanding of the experimental results.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).