Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chinese Chemical Letters Pub Date : 2024-05-29 DOI:10.1016/j.cclet.2024.110068
{"title":"Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting","authors":"","doi":"10.1016/j.cclet.2024.110068","DOIUrl":null,"url":null,"abstract":"<div><p>The rational design of high-performance bifunctional electrocatalysts for overall water splitting (OWS) is the key to popularize hydrogen production technology. The active metal oxyhydroxide (MOOH) formed after surface self-reconfiguration of transition metal sulfide (TMS) electrocatalyst is often regarded as the \"actual catalyst\" in oxygen evolution reaction (OER). Herein, an Fe doped CoS<sub>2</sub>/MoS<sub>2</sub> hollow TMS polyhedron (Fe-CoS<sub>2</sub>/MoS<sub>2</sub>) with rich Mott-Schottky heterojunction is reported and directly utilized as an OWS electrocatalyst. The spontaneous built-in electric field (BEF) at the heterogeneous interface regulates the electronic structure and D-band center of the catalyst. More importantly, the “TMS-MOOH” core-shell structure obtained in the KOH electrolyte shows enhanced OER properties. And the introduction of Fe ions activates the inert basal plane of MoS<sub>2</sub>, which greatly steps up the performance of HER. Hence, the preferable Fe-CoS<sub>2</sub>/MoS<sub>2</sub>–400 presents superior OER activity (<em>η</em><sub>10</sub> = 178 mV, <em>η</em><sub>100</sub> = 375 mV), HER activity (<em>η</em><sub>10</sub> = 92 mV) and ultra-high stability for 50 h. This work has deeply explored the catalytic mechanism of TMS and provided a new idea for the construction of efficient bifunctional catalysts.</p></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724005874","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rational design of high-performance bifunctional electrocatalysts for overall water splitting (OWS) is the key to popularize hydrogen production technology. The active metal oxyhydroxide (MOOH) formed after surface self-reconfiguration of transition metal sulfide (TMS) electrocatalyst is often regarded as the "actual catalyst" in oxygen evolution reaction (OER). Herein, an Fe doped CoS2/MoS2 hollow TMS polyhedron (Fe-CoS2/MoS2) with rich Mott-Schottky heterojunction is reported and directly utilized as an OWS electrocatalyst. The spontaneous built-in electric field (BEF) at the heterogeneous interface regulates the electronic structure and D-band center of the catalyst. More importantly, the “TMS-MOOH” core-shell structure obtained in the KOH electrolyte shows enhanced OER properties. And the introduction of Fe ions activates the inert basal plane of MoS2, which greatly steps up the performance of HER. Hence, the preferable Fe-CoS2/MoS2–400 presents superior OER activity (η10 = 178 mV, η100 = 375 mV), HER activity (η10 = 92 mV) and ultra-high stability for 50 h. This work has deeply explored the catalytic mechanism of TMS and provided a new idea for the construction of efficient bifunctional catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内置电场和核壳结构的重构硫化物异质结加速水分裂
合理设计用于整体水分离(OWS)的高性能双功能电催化剂是推广制氢技术的关键。过渡金属硫化物(TMS)电催化剂表面自重构后形成的活性金属氧氢氧化物(MOOH)通常被视为氧进化反应(OER)中的 "实际催化剂"。本文报告了一种具有丰富莫特-肖特基异质结的掺铁 CoS2/MoS2 空心 TMS 多面体(Fe-CoS2/MoS2),并将其直接用作 OWS 电催化剂。异质界面上的自发内置电场(BEF)调节了催化剂的电子结构和 D 波段中心。更重要的是,在 KOH 电解质中获得的 "TMS-MOOH "核壳结构显示出更强的 OER 性能。铁离子的引入激活了 MoS2 的惰性基面,从而大大提高了 HER 的性能。因此,优选的 Fe-CoS2/MoS2-400 具有优异的 OER 活性(η10 = 178 mV,η100 = 375 mV)、HER 活性(η10 = 92 mV)和 50 h 的超高稳定性。这项工作深入探讨了 TMS 的催化机理,为构建高效的双功能催化剂提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
期刊最新文献
Corrigendum to ‘Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots’ [Chinese Chemical Letters 34 (2023) 107672] Corrigendum to ‘How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence’ Chin. Chem. Lett. 2024, 35, 108340 Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries Corrigendum to “Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection” Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1