DEMA: Deep EEG-first multi-physiological affect model for emotion recognition

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biomedical Signal Processing and Control Pub Date : 2024-09-07 DOI:10.1016/j.bspc.2024.106812
{"title":"DEMA: Deep EEG-first multi-physiological affect model for emotion recognition","authors":"","doi":"10.1016/j.bspc.2024.106812","DOIUrl":null,"url":null,"abstract":"<div><p>In the field of electroencephalogram (EEG) emotion recognition, existing studies often focus solely on EEG-specific features, neglecting valuable emotional cues present in other physiological signals. To address this gap, we introduce the Deep EEG-first Multi-Physiological Affect (DEMA) model. DEMA leverages a Deep Multi-View Convolutional Neural Network (DMCNN) to extract comprehensive features from multi-domain EEG signals. Additionally, it integrates other physiological signals through an EEG-first Multi-Physiological Fusion (EFMF) approach. Integrating multi-physiological signals while eliminating disparate emotional characteristics, an affective influence matrix (AIM) is introduced to assess the influence of EEG signals on other physiological signals, thereby unifying different levels of representation. Our method achieves significant advancements, with DEMA scoring 97.55% in valence and 97.61% in arousal on the DEAP dataset. Ablation studies confirm that combining EEG signals with blood pressure and respiration belts optimally enhances emotion recognition performance.</p></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174680942400870X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of electroencephalogram (EEG) emotion recognition, existing studies often focus solely on EEG-specific features, neglecting valuable emotional cues present in other physiological signals. To address this gap, we introduce the Deep EEG-first Multi-Physiological Affect (DEMA) model. DEMA leverages a Deep Multi-View Convolutional Neural Network (DMCNN) to extract comprehensive features from multi-domain EEG signals. Additionally, it integrates other physiological signals through an EEG-first Multi-Physiological Fusion (EFMF) approach. Integrating multi-physiological signals while eliminating disparate emotional characteristics, an affective influence matrix (AIM) is introduced to assess the influence of EEG signals on other physiological signals, thereby unifying different levels of representation. Our method achieves significant advancements, with DEMA scoring 97.55% in valence and 97.61% in arousal on the DEAP dataset. Ablation studies confirm that combining EEG signals with blood pressure and respiration belts optimally enhances emotion recognition performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DEMA:用于情感识别的深度脑电第一多生理情感模型
在脑电图(EEG)情绪识别领域,现有研究往往只关注脑电图的特定特征,而忽视了其他生理信号中存在的有价值的情绪线索。为了弥补这一不足,我们引入了深度脑电图优先多生理情感(DEMA)模型。DEMA 利用深度多视图卷积神经网络(DMCNN)从多域脑电信号中提取综合特征。此外,它还通过脑电图优先多生理融合(EEG-first Multi-Physiological Fusion,EFMF)方法整合了其他生理信号。在整合多生理信号的同时,还消除了不同的情感特征,引入了情感影响矩阵(AIM)来评估脑电信号对其他生理信号的影响,从而统一了不同层次的表征。我们的方法取得了重大进步,在 DEAP 数据集上,DEMA 的情绪得分率达到 97.55%,唤醒得分率达到 97.61%。消融研究证实,将脑电图信号与血压带和呼吸带结合在一起可最佳地提高情绪识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
期刊最新文献
Liver disease classification using histogram-based gradient boosting classification tree with feature selection algorithm A generative adversarial network based on deep supervision for anatomical and functional image fusion Video-based heart rate estimation with spectrogram signal quality ranking and fusion Cervical vertebral maturation assessment using an innovative artificial intelligence-based imaging analysis system CoLM: Contrastive learning and multiple instance learning network for lung cancer classification of surgical options based on frozen pathological images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1