{"title":"Extracellular electron transfer-enhanced sulfamethoxazole biodegradation: Mechanisms and process strengthening","authors":"Oluwadamilola Oluwatoyin Hazzan , Collins Chimezie Elendu , Claude Kiki , Geng Chen , Juvens Sugira Murekezi , Asmamaw Abat Getu , Yong Xiao","doi":"10.1016/j.bej.2024.109484","DOIUrl":null,"url":null,"abstract":"<div><p>Antibiotics like Sulfamethoxazole (SMX) pose a significant threat to public health and environmental well-being. To address this issue, effective strategies are being developed to remove antibiotics from the environment. This study investigates the degradation of SMX with a focus on elucidating the mechanism by which extracellular electron transfer (EET) enhances the efficient degradation of the antibiotic. The results show that SMX was significantly degraded (97 %) by <em>Shewanella oneidensis</em> MR-1 after 120 hours in the presence of a bioelectrochemical system (BES) at a concentration of 1 mg L<sup>−1</sup>, compared to the absence of BES (69 %) at the same concentration and time. BES was observed to simultaneously remove pollutants like SMX while generating electricity at this concentration. Proteomic analysis was further employed to clarify the mechanism behind this process. Three key SMX-degrading proteins; S-ribosylhomocysteine lyase (luxS), Deoxyribose-phosphate aldolase (deoC), and Amidohydrolase which mainly participated in C-S cleavage, S-N hydrolysis and isoxazole ring cleavage were identified. The study demonstrates that <em>S. oneidensis</em> MR-1 can promote the generation of Nicotinamide Adenine Dinucleotide and Adenosine Triphosphate and facilitate electron transfer to enhance the efficient degradation of SMX. The findings of this study provide new insights into the correlation mechanism between SMX degradation and EET, ultimately contributing to innovative solutions for environmental remediation.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"211 ","pages":"Article 109484"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002717","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotics like Sulfamethoxazole (SMX) pose a significant threat to public health and environmental well-being. To address this issue, effective strategies are being developed to remove antibiotics from the environment. This study investigates the degradation of SMX with a focus on elucidating the mechanism by which extracellular electron transfer (EET) enhances the efficient degradation of the antibiotic. The results show that SMX was significantly degraded (97 %) by Shewanella oneidensis MR-1 after 120 hours in the presence of a bioelectrochemical system (BES) at a concentration of 1 mg L−1, compared to the absence of BES (69 %) at the same concentration and time. BES was observed to simultaneously remove pollutants like SMX while generating electricity at this concentration. Proteomic analysis was further employed to clarify the mechanism behind this process. Three key SMX-degrading proteins; S-ribosylhomocysteine lyase (luxS), Deoxyribose-phosphate aldolase (deoC), and Amidohydrolase which mainly participated in C-S cleavage, S-N hydrolysis and isoxazole ring cleavage were identified. The study demonstrates that S. oneidensis MR-1 can promote the generation of Nicotinamide Adenine Dinucleotide and Adenosine Triphosphate and facilitate electron transfer to enhance the efficient degradation of SMX. The findings of this study provide new insights into the correlation mechanism between SMX degradation and EET, ultimately contributing to innovative solutions for environmental remediation.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.