{"title":"Sample selection bias in non-traditional lending: A copula-based approach for imbalanced data","authors":"Raffaella Calabrese , Silvia Angela Osmetti , Luca Zanin","doi":"10.1016/j.seps.2024.102045","DOIUrl":null,"url":null,"abstract":"<div><p>Credit scoring models for non-traditional lending channels, such as peer-to-peer (P2P) lending platforms, are usually estimated only on the sample of accepted applicants. This may lead to biased estimates of the risk drivers. This issue can be addressed using a reject inference technique that includes the characteristics of rejected applicants in the model. Due to the low numbers of accepted applicants and default records, credit scoring models usually face a class imbalance problem. However, previous literature on sample selection models for credit scoring does not address the class imbalance issue. To fill this gap, we extend the Generalised Extreme Value (GEV) regression model for binary data to the sample selection framework. We consider the quantile function of the GEV distribution as a link function in both the selection and outcome equations. We use the copula function to model the dependence structure between the two equations for its flexibility. This proposal is called the Sample Selection Generalised Extreme Value (SSGEV) model and it is implemented in the R package BivGEV. We apply this model to a comprehensive dataset provided by Lending Club, and we show that parameter estimates obtained only on accepted P2P applicants are biased and coherently with the literature. The SSGEV model achieves a higher predictive accuracy than those obtained using univariate approaches or a sample selection probit model. Our proposal also provides more conservative estimates of the Value-at-Risk and the Expected Shortfall.</p></div>","PeriodicalId":22033,"journal":{"name":"Socio-economic Planning Sciences","volume":"95 ","pages":"Article 102045"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socio-economic Planning Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038012124002441","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Credit scoring models for non-traditional lending channels, such as peer-to-peer (P2P) lending platforms, are usually estimated only on the sample of accepted applicants. This may lead to biased estimates of the risk drivers. This issue can be addressed using a reject inference technique that includes the characteristics of rejected applicants in the model. Due to the low numbers of accepted applicants and default records, credit scoring models usually face a class imbalance problem. However, previous literature on sample selection models for credit scoring does not address the class imbalance issue. To fill this gap, we extend the Generalised Extreme Value (GEV) regression model for binary data to the sample selection framework. We consider the quantile function of the GEV distribution as a link function in both the selection and outcome equations. We use the copula function to model the dependence structure between the two equations for its flexibility. This proposal is called the Sample Selection Generalised Extreme Value (SSGEV) model and it is implemented in the R package BivGEV. We apply this model to a comprehensive dataset provided by Lending Club, and we show that parameter estimates obtained only on accepted P2P applicants are biased and coherently with the literature. The SSGEV model achieves a higher predictive accuracy than those obtained using univariate approaches or a sample selection probit model. Our proposal also provides more conservative estimates of the Value-at-Risk and the Expected Shortfall.
期刊介绍:
Studies directed toward the more effective utilization of existing resources, e.g. mathematical programming models of health care delivery systems with relevance to more effective program design; systems analysis of fire outbreaks and its relevance to the location of fire stations; statistical analysis of the efficiency of a developing country economy or industry.
Studies relating to the interaction of various segments of society and technology, e.g. the effects of government health policies on the utilization and design of hospital facilities; the relationship between housing density and the demands on public transportation or other service facilities: patterns and implications of urban development and air or water pollution.
Studies devoted to the anticipations of and response to future needs for social, health and other human services, e.g. the relationship between industrial growth and the development of educational resources in affected areas; investigation of future demands for material and child health resources in a developing country; design of effective recycling in an urban setting.