Kwok Kiu Tsang , Han Yu , Joshua Yuk Lin Lai , Ho Ming Ng , Chung Hang Kwok , Wenzhao Xiong , Huawei Hu , He Yan
{"title":"Systematic anode engineering enabling universal efficiency improvements in organic solar cells","authors":"Kwok Kiu Tsang , Han Yu , Joshua Yuk Lin Lai , Ho Ming Ng , Chung Hang Kwok , Wenzhao Xiong , Huawei Hu , He Yan","doi":"10.1016/j.giant.2024.100338","DOIUrl":null,"url":null,"abstract":"<div><p>Anode modification and optimization is crucial towards improving performance of organic solar cells (OSCs). PEDOT:PSS is the most common choice as a hole transport layer (HTL) material, but suffers from issues including low conductivity. In this work, three alkyl amine derivatives - methylamine hydrochloride (MA), ethylamine hydrochloride (EA) and propylamine hydrochloride (PA) are doped into the commercially available Al 4083 PEDOT:PSS to form PEDOT:PSS-MA, PEDOT:PSS-EA and PEDOT:PSS-PA, as modified HTLs. All these modified HTLs exhibit improved chemical and electrical properties including work functions (WF), conductivities and charge carrier motilities. The alkyl amine doping shows compatibility in both Small Molecular Acceptors and All-Polymer OSCs. With PEDOT:PSS-MA demonstrates a highest PCE of 18.49 % compared to the 17.84 % of OSC devices prepared with pristine PEDOT:PSS with the PM6:L8-BO system, while PM6:PY-IT all-polymer OSCs improve PCE from 14.53 % to 15.22 %. AFM characterizations reveal that the introduction of the dopants have smoothened the surface morphology of spin-coated HTL films, which contributes towards more efficient charge extraction. In summary, this study not only presents a method of improving OSC efficiencies, but also provides insight and further possible directions towards anode optimization of OSCs.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524001024/pdfft?md5=7cffed61bf70a5c9878f9cd5534aaefe&pid=1-s2.0-S2666542524001024-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524001024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anode modification and optimization is crucial towards improving performance of organic solar cells (OSCs). PEDOT:PSS is the most common choice as a hole transport layer (HTL) material, but suffers from issues including low conductivity. In this work, three alkyl amine derivatives - methylamine hydrochloride (MA), ethylamine hydrochloride (EA) and propylamine hydrochloride (PA) are doped into the commercially available Al 4083 PEDOT:PSS to form PEDOT:PSS-MA, PEDOT:PSS-EA and PEDOT:PSS-PA, as modified HTLs. All these modified HTLs exhibit improved chemical and electrical properties including work functions (WF), conductivities and charge carrier motilities. The alkyl amine doping shows compatibility in both Small Molecular Acceptors and All-Polymer OSCs. With PEDOT:PSS-MA demonstrates a highest PCE of 18.49 % compared to the 17.84 % of OSC devices prepared with pristine PEDOT:PSS with the PM6:L8-BO system, while PM6:PY-IT all-polymer OSCs improve PCE from 14.53 % to 15.22 %. AFM characterizations reveal that the introduction of the dopants have smoothened the surface morphology of spin-coated HTL films, which contributes towards more efficient charge extraction. In summary, this study not only presents a method of improving OSC efficiencies, but also provides insight and further possible directions towards anode optimization of OSCs.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.