Small dop of comonomer, giant shift of dynamics: α-methyl-regulated viscoelasticity of poly(methacrylamide) hydrogels

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY GIANT Pub Date : 2024-09-23 DOI:10.1016/j.giant.2024.100342
Xin Guan , Zhiheng Zhou , Xinzhen Fan , Wenchao Xu , Yijie Jin , Chuanzhuang Zhao
{"title":"Small dop of comonomer, giant shift of dynamics: α-methyl-regulated viscoelasticity of poly(methacrylamide) hydrogels","authors":"Xin Guan ,&nbsp;Zhiheng Zhou ,&nbsp;Xinzhen Fan ,&nbsp;Wenchao Xu ,&nbsp;Yijie Jin ,&nbsp;Chuanzhuang Zhao","doi":"10.1016/j.giant.2024.100342","DOIUrl":null,"url":null,"abstract":"<div><div><em>α</em>-Methyl groups play significant roles in the regulation of water molecules within both small molecular systems and bio-macromolecular systems. Systematically studying the influence of <em>α</em>-methyl on the dynamics of water molecules within hydrogel systems is therefore worthwhile. In this study, we prepared a series of hydrogen-bonded (H-bonded) hydrogels with varying densities of <em>α</em>-methyl groups by copolymerizing methacrylamide (MAm) with its <em>α</em>-methyl-absent analogue, acrylamide (Am). Introducing a small amount of Am (≤6 mol%) into the polymer chain resulted in significant shifts in the viscoelasticity of the hydrogels. The hydrogels exhibit a “time-temperature-<em>α</em>-methyl equivalence”, meaning that introduction of <em>α</em>-methyl-absent monomer has effects similar to elevating temperature and prolonging observation time on the dynamic properties. Based on low-field nuclear magnetic resonance spectroscopy and Raman scattering, a “hydrophilic defects-assisted H-bonds dissociation” mechanism is proposed, depicting that the <em>α</em>-methyl-absent monomer can disturb the rearrangement of water molecules surrounding the polymer chain and accelerate chain dissociation. These findings enabled the copolymer hydrogels with functions such as fast self-healing and tunable interface adhesion.</div></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"20 ","pages":"Article 100342"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524001061","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

α-Methyl groups play significant roles in the regulation of water molecules within both small molecular systems and bio-macromolecular systems. Systematically studying the influence of α-methyl on the dynamics of water molecules within hydrogel systems is therefore worthwhile. In this study, we prepared a series of hydrogen-bonded (H-bonded) hydrogels with varying densities of α-methyl groups by copolymerizing methacrylamide (MAm) with its α-methyl-absent analogue, acrylamide (Am). Introducing a small amount of Am (≤6 mol%) into the polymer chain resulted in significant shifts in the viscoelasticity of the hydrogels. The hydrogels exhibit a “time-temperature-α-methyl equivalence”, meaning that introduction of α-methyl-absent monomer has effects similar to elevating temperature and prolonging observation time on the dynamic properties. Based on low-field nuclear magnetic resonance spectroscopy and Raman scattering, a “hydrophilic defects-assisted H-bonds dissociation” mechanism is proposed, depicting that the α-methyl-absent monomer can disturb the rearrangement of water molecules surrounding the polymer chain and accelerate chain dissociation. These findings enabled the copolymer hydrogels with functions such as fast self-healing and tunable interface adhesion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
少量共聚物掺入,动力学巨变:α-甲基调节聚(甲基丙烯酰胺)水凝胶的粘弹性
在小分子体系和生物大分子体系中,α-甲基对水分子的调节都起着重要作用。因此,系统研究α-甲基对水凝胶体系中水分子动力学的影响是有价值的。在本研究中,我们通过甲基丙烯酰胺(MAm)与不含α-甲基的类似物丙烯酰胺(Am)共聚,制备了一系列具有不同α-甲基密度的氢键(H-键)水凝胶。在聚合物链中引入少量 Am(≤6 摩尔%)可显著改变水凝胶的粘弹性。水凝胶表现出 "时间-温度-α-甲基等效",即引入α-甲基缺失单体对动态特性的影响类似于升高温度和延长观察时间。基于低场核磁共振光谱和拉曼散射,提出了 "亲水缺陷辅助 H 键解离 "机理,说明α-甲基缺失单体可干扰聚合物链周围水分子的重排,加速链解离。这些发现使共聚物水凝胶具有快速自愈合和可调界面粘附性等功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
期刊最新文献
Influence of activation/deactivation process on surface-initiated atom transfer radical polymerization: An in silico investigation Homochiral “8″-shaped nanotoroids assembled from polypeptides Small dop of comonomer, giant shift of dynamics: α-methyl-regulated viscoelasticity of poly(methacrylamide) hydrogels The effect of dynamic cross-links and mesogenic groups on the swelling and collapse of polymer gels Binary blends of poly(lactic acid) and poly(methyl methacrylate) for high energy density and charge/discharge efficiency capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1