{"title":"Comparative investigation and test verification of cavitation and turbulence models of injector control ball valve","authors":"Ping Chen, Zhenming Liu, Rongwu Xu, Jingbin Liu","doi":"10.1016/j.ijheatfluidflow.2024.109557","DOIUrl":null,"url":null,"abstract":"<div><p>The higher the injection pressure, the more serious the cavitation phenomenon of the injector control ball valve, which seriously affects the emission and reliability of the diesel engine. The selection of turbulence and cavitation models is the key to study the above-mentioned cavitation problems using numerical methods. Based on the Winklhofer micro-channel fuel test, four turbulence models and two cavitation models with strong representation are used to construct a micro-channel model, and the simulation results are compared with the test results. The combination of the LES and ZGB model is more accurate for the calculation of mass flow at the outlet and the cavitation distribution of the micro-channel. The combination of the SST <em>k-ω</em> and the SS model is more accurate for the calculation of flow rate at the micro-channel cross-section and the pressure gradient inside the micro-channel. The combination of LES and ZGB model is more suitable for numerical simulation of control ball valve. The numerical simulation of the control ball valve is carried out by using combination of LES and ZGB model, and the visualization test of the actual size injector control ball valve is verified, with good consistency. The conclusions of the study provide guidance for the simulation analysis and design of injector control ball valve.</p></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"109 ","pages":"Article 109557"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24002820","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The higher the injection pressure, the more serious the cavitation phenomenon of the injector control ball valve, which seriously affects the emission and reliability of the diesel engine. The selection of turbulence and cavitation models is the key to study the above-mentioned cavitation problems using numerical methods. Based on the Winklhofer micro-channel fuel test, four turbulence models and two cavitation models with strong representation are used to construct a micro-channel model, and the simulation results are compared with the test results. The combination of the LES and ZGB model is more accurate for the calculation of mass flow at the outlet and the cavitation distribution of the micro-channel. The combination of the SST k-ω and the SS model is more accurate for the calculation of flow rate at the micro-channel cross-section and the pressure gradient inside the micro-channel. The combination of LES and ZGB model is more suitable for numerical simulation of control ball valve. The numerical simulation of the control ball valve is carried out by using combination of LES and ZGB model, and the visualization test of the actual size injector control ball valve is verified, with good consistency. The conclusions of the study provide guidance for the simulation analysis and design of injector control ball valve.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.