Determination of geometrical deviations of large crankshafts depending on the adopted conditions of their fixing and support

Krzysztof Nozdrzykowski , Rafał Grzejda , Magdalena Nozdrzykowska , Mateusz Stępień
{"title":"Determination of geometrical deviations of large crankshafts depending on the adopted conditions of their fixing and support","authors":"Krzysztof Nozdrzykowski ,&nbsp;Rafał Grzejda ,&nbsp;Magdalena Nozdrzykowska ,&nbsp;Mateusz Stępień","doi":"10.1016/j.precisioneng.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents the procedures developed to correctly assess the geometric condition of large crankshafts using a novel measurement system equipped with a specially designed prism support system with computer monitoring of support reaction forces. These procedures were developed for three variants of measurement execution corresponding to conditions: non-referenced (fixing of the shaft to be measured with the outer extremes of the faces in the spherical prisms and supporting the shaft in the central part with a set of supports referred to as ‘elastic’), referenced (fixing of the shaft to be measured by the outer extremes of the main journals in prisms and support of the crankshaft in the central part, as in the case of the previous variant, by a set of supports referred to as ‘elastic’) and realised in conditions similar to the traditional ones (fixing and support of the crankshaft by a set of prism supports maintaining a constant height position). Considering the utilitarian potential of the developed procedures, exemplary applications of their practical use in the measurement of large crankshafts are presented.</p></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 36-46"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014163592400196X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the procedures developed to correctly assess the geometric condition of large crankshafts using a novel measurement system equipped with a specially designed prism support system with computer monitoring of support reaction forces. These procedures were developed for three variants of measurement execution corresponding to conditions: non-referenced (fixing of the shaft to be measured with the outer extremes of the faces in the spherical prisms and supporting the shaft in the central part with a set of supports referred to as ‘elastic’), referenced (fixing of the shaft to be measured by the outer extremes of the main journals in prisms and support of the crankshaft in the central part, as in the case of the previous variant, by a set of supports referred to as ‘elastic’) and realised in conditions similar to the traditional ones (fixing and support of the crankshaft by a set of prism supports maintaining a constant height position). Considering the utilitarian potential of the developed procedures, exemplary applications of their practical use in the measurement of large crankshafts are presented.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据采用的固定和支撑条件确定大型曲轴的几何偏差
本文介绍了为正确评估大型曲轴的几何状况而开发的程序,该程序使用了一种新型测量系统,该系统配备了专门设计的棱柱支撑系统,并通过计算机监控支撑反作用力。这些程序是针对三种不同的测量执行条件开发的:非基准(用球形棱柱中的端面外缘固定待测轴,并用一组称为 "弹性 "的支撑在中心部分支撑轴)、基准(用棱柱中的主轴颈外缘固定待测轴,并在中心部分支撑曲轴、与前一种变体一样,曲轴由一组称为 "弹性 "的支架支撑),以及在与传统条件类似的条件下实现(由一组保持恒定高度位置的棱柱支架固定和支撑曲轴)。考虑到所开发程序的实用潜力,介绍了其在大型曲轴测量中的实际应用示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
期刊最新文献
Distance deviation sensitivity on null test of convex hyperboloid mirrors with large relative aperture Stiffness model for pneumatic spring with air-diaphragm coupling effect Rapid non-contact measurement of distance between two pins of flexspline in harmonic reducers based on standard/actual parts comparison Based on domain adversarial neural network with multiple loss collaborative optimization for milling tool wear state monitoring under different machining conditions Fabrication of angle-gradient echelle grating on metallic glass using shaped vibration cutting with time-varying trajectory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1