Building detection in VHR remote sensing images using a novel dual attention residual-based U-Net (DAttResU-Net): An application to generating building change maps
Ehsan Khankeshizadeh , Ali Mohammadzadeh , Amin Mohsenifar , Armin Moghimi , Saied Pirasteh , Sheng Feng , Keli Hu , Jonathan Li
{"title":"Building detection in VHR remote sensing images using a novel dual attention residual-based U-Net (DAttResU-Net): An application to generating building change maps","authors":"Ehsan Khankeshizadeh , Ali Mohammadzadeh , Amin Mohsenifar , Armin Moghimi , Saied Pirasteh , Sheng Feng , Keli Hu , Jonathan Li","doi":"10.1016/j.rsase.2024.101336","DOIUrl":null,"url":null,"abstract":"<div><p>In today's era, increasing access to very high-resolution remote sensing images (VHR-RSIs) has enhanced building detection and change assessment capabilities. These applications provide accurate urban mapping, facilitate effective land management, and support disaster assessment by delivering detailed insights into building structures and their temporal changes. This study uses a two-stage process to present a pioneering approach for generating precise building maps (BMs) and subsequent building change maps (BCMs) from VHR-RSIs. The primary question addressed by the research is how to enhance the U-Net architecture to improve its sensitivity to both high-level semantic features (HLSF) and low-level spatial features (LLSF) in the building detection task. For this purpose, in the initial stage of the method, a novel deep learning model called dual attention residual-based U-Net (DAttResU-Net) is introduced. This model incorporates two significant modifications to the conventional U-Net, enhancing its capacity to yield bi-temporal BMs. Firstly, each standard convolutional block (CB) is replaced with an optimized CB incorporating a channel-spatial attention module attuned to the building objects' crucial HLSF. Secondly, an additional attention module is integrated into the encoder-decoder path of the model, heightening the sensitivity of U-Net to vital LLSF of buildings while disregarding extraneous background spatial information during the fusion of HLSF and LLSF. In the subsequent stage, the bi-temporal BMs generated by the DAttResU-Net are subjected to a box-based class-object change detection methodology to produce accurate BCMs. The effectiveness of the proposed architecture is rigorously evaluated against state-of-the-art models in both BM and BCM generation contexts, utilizing the well-established WHU dataset for experimentation. The experimental results indicated that the DAttResU-Net model, boasting an average of <span><math><mrow><msub><mi>P</mi><mtext>FN</mtext></msub></mrow></math></span>/ <span><math><mrow><msub><mi>P</mi><mtext>FP</mtext></msub></mrow></math></span> value of 2.33/1.34 (%) surpasses the performance of the state-of-the-art models in generating bi-temporal BMs. Furthermore, the building change detection outcomes demonstrated the proficient role of the bi-temporal BMs predicted by the proposed model in leading to the most optimal BCMs, exhibiting average <span><math><mrow><msub><mi>P</mi><mtext>FN</mtext></msub></mrow></math></span>/ <span><math><mrow><msub><mi>P</mi><mtext>FP</mtext></msub></mrow></math></span> value of 2.63/8.93 (%), outperforming comparative networks. Finally, we concluded that the proposed DAttResU-Net architecture is a highly promising and applicable model for producing reliable BMs and BCMs.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101336"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In today's era, increasing access to very high-resolution remote sensing images (VHR-RSIs) has enhanced building detection and change assessment capabilities. These applications provide accurate urban mapping, facilitate effective land management, and support disaster assessment by delivering detailed insights into building structures and their temporal changes. This study uses a two-stage process to present a pioneering approach for generating precise building maps (BMs) and subsequent building change maps (BCMs) from VHR-RSIs. The primary question addressed by the research is how to enhance the U-Net architecture to improve its sensitivity to both high-level semantic features (HLSF) and low-level spatial features (LLSF) in the building detection task. For this purpose, in the initial stage of the method, a novel deep learning model called dual attention residual-based U-Net (DAttResU-Net) is introduced. This model incorporates two significant modifications to the conventional U-Net, enhancing its capacity to yield bi-temporal BMs. Firstly, each standard convolutional block (CB) is replaced with an optimized CB incorporating a channel-spatial attention module attuned to the building objects' crucial HLSF. Secondly, an additional attention module is integrated into the encoder-decoder path of the model, heightening the sensitivity of U-Net to vital LLSF of buildings while disregarding extraneous background spatial information during the fusion of HLSF and LLSF. In the subsequent stage, the bi-temporal BMs generated by the DAttResU-Net are subjected to a box-based class-object change detection methodology to produce accurate BCMs. The effectiveness of the proposed architecture is rigorously evaluated against state-of-the-art models in both BM and BCM generation contexts, utilizing the well-established WHU dataset for experimentation. The experimental results indicated that the DAttResU-Net model, boasting an average of / value of 2.33/1.34 (%) surpasses the performance of the state-of-the-art models in generating bi-temporal BMs. Furthermore, the building change detection outcomes demonstrated the proficient role of the bi-temporal BMs predicted by the proposed model in leading to the most optimal BCMs, exhibiting average / value of 2.63/8.93 (%), outperforming comparative networks. Finally, we concluded that the proposed DAttResU-Net architecture is a highly promising and applicable model for producing reliable BMs and BCMs.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems